Skip to main content
Log in

Thermal decomposition mechanism of Ba(DPM)2

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

We have investigated the thermal decomposition behavior of Ba(DPM)2 using thermogravimetry (TG), mass spectrometry (MS), ultraviolet (UV) absorption and in-situ Fourier transform infrared (FTIR) spectroscopy. FTIR has been used particularly for direct monitoring of the bond dissociation order in the metal complex by thermal treatment in either N2 or O2.

TG analysis shows that the ambient gas has a significant effect on the weight loss patterns of Ba(DPM)2. The chemical bonds of Ba(DPM)2 begin to decompose at low temperatures below 50 °C and are sequentially dissociated when the temperature is raised. The C-C(CH3)3 and the Ba-O bonds are decomposed most easily at low temperatures, followed by the C-H bond, but the stable C-C and C-O bonds do not dissociate until the total complex is gasified. The decomposition sequence of the chemical bonds in Ba(DPM)2 is similar to that of Sr(DPM)2 but differs from that of Ti(O-iPr)2(DPM)2 which is decomposed in the sequence of C(CH3)3 > C-H and C-O > Ti-O. The major difference in the decomposition sequence between Ba and Ti complexes can be seen to derive from the intrinsic character of the individual metal-oxygen bond as observed by UV spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B.J. Hinds, R.J. McNeely, D.B. Studebaker, T.J. Marks, T.P. Hogan, J.L. Schindler, C.R. Kannewurf, X.F. Zhang, and D.J. Miller, J. Mater. Res. 12(5), 1214 (1997).

    Article  CAS  Google Scholar 

  2. D.E. Kotecki, Integrated Ferroelectrics 16, 1 (1997).

    Article  CAS  Google Scholar 

  3. L.H. Parker, and A.F. Tasch, IEEE Circuits and Devices Megazine, Jan., 17 (1990).

  4. A.F. Panson, R.G. Charles, D.N. Schmidt, J.R. Szedon, G.J. Machiko, and A.I. Braginski, Appl. Phys. Lett. 53, 1756 (1988).

    Article  CAS  Google Scholar 

  5. M. Yoshida, H. Yamaguchi, T. Sakuma, Y. Miyasaka, P.-Y. Lesaicherre, and A. Ishitani, J. Electrochem. Soc. 142(1), 244 (1995).

    Article  CAS  Google Scholar 

  6. S.R. Drake, M.B. Hursthouse, K.M. Abdul Malik, and D.J. Otway, J. Chem. Soc. Dalton Trans. 2883 (1993).

  7. A.R. Barron, and W.S. Rees Jr., Advanced Mater. for Optics and Electronics 2, 271 (1993).

    Article  CAS  Google Scholar 

  8. S.B. Turnipseed, R.M. Barkely, and R.E. Sievers, Inorg. Chem. 30, 1164 (1991).

    Article  CAS  Google Scholar 

  9. T.P. Hanusa, Chem. Rev. 93, 1023 (1993).

    Article  CAS  Google Scholar 

  10. D.C. Bradley, Polyhedron 13, 1111 (1994).

    Article  CAS  Google Scholar 

  11. V.G. Minkina, Russ. Chem. Bull. 42(9), 1460 (1993).

    Article  Google Scholar 

  12. H.-K. Ryu, J.S. Heo, S.-I. Cho, and S.H. Moon, J. Electrochem. Soc. 146(3), 1117 (1999).

    Article  CAS  Google Scholar 

  13. H.-K. Ryu, J.S. Heo, S.-I. Cho, C. Chung, and S.H. Moon, J. Electrochem. Soc. 147(3), in press (2000).

  14. S.H. Moon, H. Windawi, and J.R. Katzer, Ind. Eng. Chem. Fundam. 20, 396 (1981).

    Article  CAS  Google Scholar 

  15. S. Pinchas, B.L. Silver, and I. Laulicht, J. Chem. Phys. 46, 1506 (1967).

    Article  CAS  Google Scholar 

  16. B. Zheng, G. Braeckemann, K. Kujawski, I. Lou, S. Lane, and A.E. Kaloyeros, J. Electrochem. Soc. 142, 3896 (1995).

    Article  CAS  Google Scholar 

  17. K. Nakamoto, and A.E. Martell, J. Chem. Phys. 32, 588 (1960).

    Article  CAS  Google Scholar 

  18. M. Mikami, I. Nakagawa, and T. Shimanouchi, Spectrochimica Acta 23A, 1037 (1967).

    Google Scholar 

  19. W.A. Herrmann, N.W. Huber, and O. Runte, Angew. Int. Ed. Engl. 34, 2187 (1995).

    Article  CAS  Google Scholar 

  20. P.H. Dickinson, T.H. Geballe, A. Sanjurjo, D. Hildenbrand, G. Craig, M. Zisk, J. Collman, S.A. Banning, and R.E. Sievers, J. Appl. Phys. 66(1), 444 (1989).

    Article  CAS  Google Scholar 

  21. H. Harima, H. Ohnishi, K. Hanaoka, K. Tachibana, and G. Yoto, Jpn. J. Appl. Phys. 30(9A), 1946 (1993).

    Google Scholar 

  22. H.A. Stecher, A. Sen, and A.L. Rheingold, Inorg. Chem. 28, 3280 (1989).

    Article  CAS  Google Scholar 

  23. J. Aarik, A. Aidia, A. Taek, M. Leskela, and L. Niinisto, J. Mater. Chem. 4(8), 1239 (1994).

    Article  CAS  Google Scholar 

  24. L. Huang, S.B. Turnipseed, R.C. Haltiwanger, B.M. Barkley, and R.E. Sievers, Inorg. Chem. 33, 798 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryu, HK., Cho, SI., Heo, J.S. et al. Thermal decomposition mechanism of Ba(DPM)2 . Res Chem Intermed 26, 499–513 (2000). https://doi.org/10.1163/156856700X00499

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856700X00499

Keywords

Navigation