Skip to main content
Log in

Controversy and complementarity in mechanistic organic chemistry. The transition state and structural theories reexamined

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

It is proposed that molecular phenomena may only be described within the framework of the Complementarity Principle (‘CP’), and that scientific controversy may originate in the essential incompatibility of complementary representations. Complementarity based on the temporal Uncertainty Principle leads to new insights into transition state theory, microscopic reversibility and the Curtin-Hammett Principle. An empirical application of the ‘CP’ to the structural theory leads to a revision of present concepts of ‘reaction dynamics’, with the Principle of Least Nuclear Motion (‘PLNM’) emerging as a general alternative to electronic theories of reactivity. In fact, it is argued that the ‘PLNM’ is a better basis for the Woodward-Hoffmann rules than is orbital symmetry. A more flexible approach to organic reaction mechanisms is thus indicated. Also, as the basis of the structural theory is fundamentally uncertain, and the present theory of X-ray diffraction apparently incompatible with the ‘UP’, a reinterpretation of the Bragg equation has been attempted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Primas, Chimia 36, 293 (1982).

    CAS  Google Scholar 

  2. P.W. Atkins, Molecular Quantum Mechanics, 2nd Ed., Oxford University Press, Oxford, 1983, pp. 18 and 92.

    Google Scholar 

  3. J. Mehra, The Quantum Principle: Its Interpretation and Epistemology, D. Reidel Publishing Company, Dordrecht/Boston, 1974.

    Google Scholar 

  4. S. Chandrasekhar, Res. Chem. Intermed. 23, 55 (1997).

    Article  CAS  Google Scholar 

  5. S. Chandrasekhar, Res. Chem. Intermed. 23, 137 (1996).

    Article  Google Scholar 

  6. K.J. Laidler, Theories of Chemical Reaction Rates, McGraw-Hill, New York, 1969.

    Google Scholar 

  7. L.P. Hammett, Physical Organic Chemistry, 2nd Ed., McGraw-Hill, New York, 1970.

    Google Scholar 

  8. M.L. Sinnott Adv. Phys. Org. Chem. 24, 113 (1988).

    Article  CAS  Google Scholar 

  9. S. Chandrasekhar, Res. Chem. Intermed. 17, 173 (1992).

    Article  CAS  Google Scholar 

  10. F.R. Jensen and B. Rickborn, Electrophilic Substitution of Organo-mercurials, McGraw-Hill, New York, 1968, p. 157; D.S. Matteson, Organometallic Reaction Mechanisms, Academic Press, New York, 1974, pp. 94 and 96; Idem. Organometal. Chem. Rev. 4, 263 (1969).

    Google Scholar 

  11. J.I. Seeman, Chem. Rev. 83, 83 (1983).

    Article  CAS  Google Scholar 

  12. R.G. Woolley, J. Am. Chem. Soc. 100, 1073 (1978); Idem., New Sci. 120, 53 (1988); Idem., J. Chem. Educ. 62, 1082 (1985); Idem., Struct. Bonding (Berlin) 52, 1 (1982); S.J. Weininger, J. Chem. Educ. 61, 939 (1984).

    Article  CAS  Google Scholar 

  13. A.J. Rocke, Chem. Br. 29, 401 (1993); R.W. Rosner, ibid. 29, 675 (1993).

    Google Scholar 

  14. P.W. Atkins, Physical Chemistry, 5th Ed., Oxford University Press, Oxford, 1995; (a) chapter 11–14, (b) p. 412.

    Google Scholar 

  15. H.C. Brown, The Nonclassical Ion Problem, Plenum, New York, 1977.

    Google Scholar 

  16. C.L. Perrin and J.D. Thoburn, J. Am. Chem. Soc. 115, 3140 (1993).

    Article  CAS  Google Scholar 

  17. F.M. Menger, Acc. Chem. Res. 26, 206 (1993).

    Article  CAS  Google Scholar 

  18. D.R. Storm and D.E. Koshland Jr., J. Am. Chem. Soc. 94, 5805 (1972); A.D. Mesecar, B.L. Stoddard and D.E. Koshland Jr., Science 277, 202 (1997).

    Article  CAS  Google Scholar 

  19. J. Hine, Adv. Phys. Org. Chem. 15, 1 (1977).

    Article  CAS  Google Scholar 

  20. R.B. Woodward and R. Hoffmann, Conservation of Orbital Symmetry, Verlag Chemie, Weinheim, 1970; I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley, London, 1976.

    Google Scholar 

  21. E.N. Marvell, Thermal Electrocyclic Reactions, Academic Press, New York, 1980.

    Google Scholar 

  22. E.L. Eliel, S.H. Wilen and L.N. Mander, Stereochemistry of Organic Compounds, Wiley, New York, 1994; (a) p. 621, (b) p. 755.

    Google Scholar 

  23. N.J. Turro, Modern Molecular Photochemistry, Benjamin/Cummings, Menlo Park (CA), 1978; (a) p. 11, (b) p. 424.

    Google Scholar 

  24. W.J. Buma, B.E. Kohler and K. Song, J. Chem. Phys. 94, 6367 (1991).

    Article  CAS  Google Scholar 

  25. J.P. Glusker and K.N. Trueblood, Crystal Structure Analysis, 2nd Ed., Oxford University Press, New York and Oxford, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandrasekhar, S. Controversy and complementarity in mechanistic organic chemistry. The transition state and structural theories reexamined. Res. on Chem. Intermed. 24, 625–642 (1998). https://doi.org/10.1163/156856798X00528

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856798X00528

Keywords

Navigation