Skip to main content
Log in

Synthetic Biology: A Bridge Between Functional and Evolutionary Biology

  • Published:
Biological Theory Aims and scope Submit manuscript

Abstract

The interests of synthetic biologists may appear to differ greatly from those of evolutionary biologists. The engineering of organisms must be distinguished from the tinkering action of evolution; the ambition of synthetic biologists is to overcome the limits of natural evolution. But the relations between synthetic biology and evolutionary biology are more complex than this abrupt opposition: Synthetic biology may play an important role in the increasing interactions between functional and evolutionary biology. In practice, synthetic biologists have learnt to submit the proteins and modules they construct to a Darwinian process of selection that optimizes their functioning. More importantly, synthetic biology can provide evolutionary biologists with decisive tools to test the scenarios they have elaborated by resurrecting some of the postulated intermediates in the evolutionary process, characterizing their properties, and experimentally testing the genetic changes supposed to be the source of new morphologies and functions. This synthetic, experimental evolution will renew and clarify many debates in evolutionary biology: It will lead to the explosion of some vague concepts as constraints, parallel evolution, and convergence, and replace them with precise mechanistic descriptions. In this way, synthetic biology resurrects the old philosophical debate about the relations between the real and the possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abzhanov A, Kuo WP, Hartmann C, Grant BR, Grant PR, Tabin CJ (2006) The calmodulin pathway and evolution of elongated beak morphology in Darwin’s finches. Nature 442: 563–567.

    Article  Google Scholar 

  • Abzhanov A, Protas M, Grant BR, Grant PR, Tabin CJ (2004) BMP4 and morphological variation of beaks in Darwin’s finches. Science 305: 1462–1465.

    Article  Google Scholar 

  • Alper H, Fischer C, Nevoigt E, Stephanopoulos G (2005) Tuning genetic control through promoter engineering. Proceedings of the National Academy of Sciences of the USA 102: 12678–12683.

    Article  Google Scholar 

  • An W, Chin JW (2009) Synthesis of orthogonal transcription-translation networks. Proceedings of the National Academy of Sciences of the USA 106: 8477–8482.

    Article  Google Scholar 

  • Beldade P, Koops K, Brakefield PM (2002) Developmental constraints versus flexibility in morphological evolution. Nature 416: 844–847.

    Article  Google Scholar 

  • Bensaude-Vincent B (2009) Synthetic biology as a replica of synthetic chemistry? Uses and misuses of history. Biological Theory 4: 314–318.

    Article  Google Scholar 

  • Bokov K, Steinberg SV (2009) A hierarchical model for evolution of 23S ribosomal RNA. Nature 457: 977–980.

    Article  Google Scholar 

  • Brent R (2004) A partnership between biology and engineering. Nature Biotechnology 22: 1211–1214.

    Article  Google Scholar 

  • Britten RJ, Davidson EH (1971) Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty. Quarterly Review of Biology 46: 111–135.

    Article  Google Scholar 

  • Buckling A, Maclean RC, Brockhurst MA, Colegrave N (2009) The Beagle in a bottle. Nature 457: 824–829.

    Article  Google Scholar 

  • Carroll SB (2008) Evo-Devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution. Cell 134: 25–36.

    Article  Google Scholar 

  • Chen BS, Chang CH, Lee HC (2009) Robust synthetic biology design: Stochastic game theory approach. Bioinformatics 25: 1822–1830.

    Article  Google Scholar 

  • Colosimo PF, Hosemann KE, Balabhadra S, Villarreal G Jr, Dickson M, Grimwood J, Schmutz J, Myers RM, Schluter D, Kingsley DM (2005) Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin alleles. Science 307: 1928–1933.

    Article  Google Scholar 

  • Conway Morris S (2003) Life’s Solution: Inevitable Humans in a Lonely Universe. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Crelekos CJ, Wang Y, Green ED, NISC Comparative Sequencing Program, Martin JF, Rasweiler JJ, Behringer RR (2008) Regulatory divergence modifies limb length between mammals. Genes and Development 22: 141–151.

    Article  Google Scholar 

  • Cropp TA, Schultz PG (2004) An expanding genetic code. Trends in Genetics 20: 625–630.

    Article  Google Scholar 

  • Danchin A (2007) Archives or palimpsests? Bacterial genomes unveil a scenario for the origin of life. Biological Theory 2: 52–61.

    Article  Google Scholar 

  • Davidson EH, Erwin DH (2006) Gene regulatory networks and the evolution of animal body plans. Science 311: 796–800.

    Article  Google Scholar 

  • Dean AM, Thornton JW (2007) Mechanistic approaches to the study of evolution: The functional synthesis. Nature Reviews Genetics 8: 675–688.

    Article  Google Scholar 

  • Duboule D, Wilkins AS (1998) The evolution of “bricolage.” Trends in Genetics 14: 54–59.

    Article  Google Scholar 

  • Eldar A, Chary VK, Xenopoulos P, Fontes ME, Loson OC, Dworkin J, Piggo PJ, Elowitz MB (2009) Partial penetrance facilitates developmental evolution in bacteria. Nature 460: 510–514.

    Google Scholar 

  • Erwin DH, Davidson EH (2009) The evolution of hierarchical gene regulatory networks. Nature Reviews Genetics 10: 141–148.

    Article  Google Scholar 

  • Gaucher EA, Thomson JM, Burgan MF, Benner SA (2003) Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins. Nature 425: 285–288.

    Article  Google Scholar 

  • Gertz J, Siggia ED, Cohen BA (2009) Analysis of combinatorial cis-regulation in synthetic and genomic promoters. Nature 457: 215–218.

    Article  Google Scholar 

  • Goldschmidt R (1940) The Material Basis of Evolution. New Haven, CT: Yale University Press.

    Google Scholar 

  • Gross JB, Borowsky R, Tabin CJ (2009) A novel role for Mclr in the parallel evolution of depigmentation in independent populations of the cavefish Astyanax mexicanus. PLoS Genetics 5(1): e1000326 doi:10.1371/journal.pgen.1000326

    Article  Google Scholar 

  • Hartner FS, Ruth C, Langenegger D, Johnson SN, Hyka P, Lin-Cereghino GP, Lin-Cereghino J, Kovar K, Cregg JM, Glieder A (2008) Promoter library designed for fine-tuned gene expression in Pichia pastoris. Nucleic Acid Research 36: 12 e76.

    Article  Google Scholar 

  • Haseltine EL, Arnold FH (2007) Synthetic gene circuits: Design with directed evolution. Annual Review of Biophysics and Biomolecular Structure 36: 1–19.

    Article  Google Scholar 

  • Hoekstra HE, Coyne JA (2007) The locus of evolution: Evo devo and the genetics of adaptation. Evolution 61: 995–1016.

    Article  Google Scholar 

  • Isalan M, Lemerle C, Michalodimitrakis K, Horn C, Beltrao P, Raineri E, Garriga-Canut M, Serrano L (2008) Evolvability and hierarchy in rewired bacterial gene networks. Nature 452: 840–845.

    Article  Google Scholar 

  • Jacob F (1977) Evolution and tinkering. Science 196: 1161–1166.

    Article  Google Scholar 

  • Keller EF (2002) Making Sense of Life: Explaining Biological Development with Models, Metaphors, and Machines. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Keller EF (2009) Knowing as making, making as knowing: The many lives of synthetic biology. Biological Theory 4: 333–339.

    Article  Google Scholar 

  • King MC, Wilson AC (1975) Evolution at two levels in humans and chimpanzees. Science 188: 107–116.

    Article  Google Scholar 

  • Kinkhabwala A, Guet CC (2008) Uncovering cis-regulatory codes using synthetic promoter shuffling. PloS One 3(4): e2030.

    Article  Google Scholar 

  • Koder RL, Anderson JLR, Solomon LA, Reddy KS, Moser CC, Dutton PL (2009) Design and engineering of an O2 transport protein. Nature 458: 305–309.

    Article  Google Scholar 

  • Kollmann M, Lovdok L, Bartholome K, Timmer J, Sourjik V (2005) Design principles of a bacterial signalling network. Nature 438: 504–507.

    Article  Google Scholar 

  • Koonin EV, Aravind L, Kondrashov AS (2000) The impact of comparative genomics on our understanding of evolution. Cell 101: 573–576.

    Article  Google Scholar 

  • Kreimer A, Borenstein E, Gophna U, Ruppin E (2008) The evolution of modularity in bacterial metabolic networks. Proceedings of the National Academy of Sciences of the USA 105: 6976–6981.

    Article  Google Scholar 

  • Leaver M, Dominguez-Cuevas P, Coxhead JM, Daniel RA, Errington J (2009) Life without a wall or division machine in Bacillus subtilis. Nature 457: 849–853.

    Article  Google Scholar 

  • Lenski RE, Travisano M (1994) Dynamics of adaptation and diversification: A 10,000-generation experiment with bacterial populations. Proceedings of the National Academy of Sciences of the USA 91: 6808–6814.

    Article  Google Scholar 

  • Liu R, Ochman H (2007) Stepwise formation of the bacterial flagellar system. Proceedings of the National Academy of Sciences of the USA 104:7116–7121.

    Article  Google Scholar 

  • Mayr E (1961) Cause and effect in biology. Science 134: 1501–1506.

    Article  Google Scholar 

  • Morange M (2007) French tradition and the rise of Evo-devo. Theory in Biosciences 126: 149–153.

    Article  Google Scholar 

  • Morange M (2009a) A critical perspective on synthetic biology. Hyle 15: 21–30.

    Google Scholar 

  • Morange M (2009b) A new revolution? The place of systems biology and synthetic biology in the history of biology. EMBO Reports 10: 50–53.

    Article  Google Scholar 

  • Morange M (2009c) Articulating different modes of explanation: The present boundary in biological research. In: Mapping the Future of Biology (Barberousse A, Morange M, Pradeu T, eds) 15–26. Berlin, Germany: Springer.

    Chapter  Google Scholar 

  • Ortlund EA, Bridgham JT, Redinbo MR, Thornton JW (2007) Crystal structure of an ancient protein: Evolution by conformational epistasis. Science 317: 544–548.

    Article  Google Scholar 

  • Peretó J, Català J (2007) The renaissance of synthetic biology. Biological Theory 2: 128–130.

    Article  Google Scholar 

  • Pichersky E, Noel JP, Dudareva N (2006) Biosynthesis of plant volatiles: Nature’s diversity and ingenuity. Science 311: 808–811.

    Article  Google Scholar 

  • Pollack SJ, Jacobs JW, Schultz PG (1986) Selective chemical catalysis by an antibody. Science 234: 1570–1573.

    Article  Google Scholar 

  • Purnick PEM, Weiss R (2009) The second wave of synthetic biology: From Nature Reviews Molecular Cell Biology 10: 410–422.

    Article  Google Scholar 

  • Schlosser G, Wagner GP, eds (2004) Modularity in Development and Evolution. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Shubin N, Tabin C, Carroll S (2009) Deep homology and the origins of evolutionary novelty. Nature 457: 818–823.

    Article  Google Scholar 

  • Thornton JW, Need E, Crews D (2003) Resurrecting the ancestral steroid receptor: Ancient origin of estrogen signaling. Science 301: 1714–1717.

    Article  Google Scholar 

  • Tokuriki N, Stricher P, Serrano L, Tawfik DS (2008) How protein stability and new functions trade off. PLoS Computational Biology 4(2): e1000002.

    Article  Google Scholar 

  • Tokuriki N, Tawfik S (2009) Chaperonin overexpression promotes genetic variation and enzyme evolution. Nature 459: 668–673.

    Article  Google Scholar 

  • Tramontano A, Janda KD, Lerner RA (1986) Catalytic antibodies. Science 234: 1566–1570.

    Article  Google Scholar 

  • Tsong AE, Tuch BB, Li H, Johnson AD (2006) Evolution and alternative transcriptional circuits with identical logic. Nature 443: 415–420.

    Article  Google Scholar 

  • Waddington CH (1941) Canalization of development and the inheritance of acquired characters. Nature 150: 563–565.

    Article  Google Scholar 

  • Wagner GP, Pavlicev M, Cheverud JM (2007) The road to modularity. Nature Reviews Genetics 8: 921–931.

    Article  Google Scholar 

  • Wang L, Brock A, Herberich B, Schültz PG (2001) Expanding the genetic code of Escherichia coli. Science 292: 498–500.

    Article  Google Scholar 

  • Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460: 894–898.

    Article  Google Scholar 

  • Weinreich DM, Delaney NF, DePristo MA, Hartl DL (2006) Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312: 111–114.

    Article  Google Scholar 

  • Wender PA, Miller BL (2009) Synthesis at the molecular frontier. Nature 460: 197–201.

    Article  Google Scholar 

  • Wilks HM, Hart KW, Feeney R, Dunn CR, Muirhead H, Chia WN, Barstow DA, Atkinson T, Clarke AR, Holbrooke JJ (1988) A specific, highly active malate dehydrogenase by redesign of a lactate dehydrogenase framework. Science 242: 1541–1544.

    Article  Google Scholar 

  • Wilson AC, Sarich VM, Maxson CR (1974) The importance of gene rearrangement in evolution: Evidence from studies on rates of chromosomal, protein, and anatomical evolution. Proceedings of the National Academy of Sciences of the USA 71: 3028–3030.

    Article  Google Scholar 

  • Woods R, Schneider D, Winkworth CL, Riley MA, Lenski RE (2006) Tests of parallel molecular evolution in a long-term experiment with Escherichia coli. Proceedings of the National Academy of Sciences of the USA 103: 9107–9112.

    Article  Google Scholar 

  • Wu P, Jiang TX, Suksaweang S, Widelitz RB, Chuong CM (2004) Molecular shaping of the beak. Science 305: 1465–1466.

    Article  Google Scholar 

  • Yi TM, Huang Y, Simon MI, Doyle J (2000) Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proceedings of the National Academy of Sciences of the USA 97: 4649–4653.

    Article  Google Scholar 

  • Yoshikuni Y, Ferrin TE, Keasling JD (2006) Designed divergent evolution of enzyme function. Nature 440: 1078–1082.

    Article  Google Scholar 

  • Yuh CH, Bolouri H, Davidson EH (1998) Genomic cis-regulatory logic: Experimental and computational analysis of a sea urchin gene. Science 279: 1896–1902.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Morange.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morange, M. Synthetic Biology: A Bridge Between Functional and Evolutionary Biology. Biol Theory 4, 368–377 (2009). https://doi.org/10.1162/BIOT_a_00003

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1162/BIOT_a_00003

Keywords

Navigation