Thromb Haemost 2007; 97(03): 370-377
DOI: 10.1160/TH06-08-0471
Theme Issue Article
Schattauer GmbH

Ubiquitylation within signaling pathways in- and outside of inflammation

Karin Hochrainer*
1   Department of Vascular Biology and Thrombosis Research, Center of Biomolecular Medicine and Pharmacology, Medical University of Vienna, Vienna, Austria
,
Joachim Lipp
1   Department of Vascular Biology and Thrombosis Research, Center of Biomolecular Medicine and Pharmacology, Medical University of Vienna, Vienna, Austria
› Author Affiliations
Further Information

Publication History

Received 29 August 2006

Accepted after revision 07 February 2006

Publication Date:
28 November 2017 (online)

Summary

Ubiquitin is a highly conserved 76-amino-acid peptide that becomes covalently attached to lysine residues of target proteins. Since ubiquitin itself contains seven lysine residues, ubiquitin molecules can generate different types of polyubiquitin chains. Lys48-linked polyubiquitylation is well-known as posttrans-lational tag for targeting proteins for degradation by the 26S proteasome. Recent studies have revealed several new functions of ubiquitin, e.g. activation of protein kinases, control of gene transcription, DNA repair and replication, intracellular trafficking and virus budding. These functions are mainly mediated by Lys63 polyubiquitin chains or attachment of a single ubiquitin molecule to one or several lysine residues within the target protein. Importantly, protein ubiquitylation exhibits inducibility, reversibilty and recognition by specialized ubiquitin-binding domains, features similar to protein phosphorylation. In this review we comprehensively describe regulations of protein ubiquitylation and their impact on distinct signaling pathways.

* Current address: Weill Medical College of Cornell University, Department of Neurology and Neuroscience, Division of Neurobiology, 411 East 69th Street, New York, NY 10021, USA


 
  • References

  • 1 Hershko A, Ciechanover A, Varshavsky A. Basic Medical Research Award. The ubiquitin system. Nat Med 2000; 6: 1073-1081.
  • 2 McGrath JP, Jentsch S, Varshavsky A. UBA 1: an essential yeast gene encoding ubiquitin-activating enzyme. Embo J 1991; 10: 227-236.
  • 3 Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem 2001; 70: 503-533.
  • 4 Wilkinson KD. Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin Cell Dev Biol 2000; 11: 141-148.
  • 5 Wing SS. Deubiquitinating enzymes--the importance of driving in reverse along the ubiquitin-proteasome pathway. Int J Biochem Cell Biol 2003; 35: 590-605.
  • 6 Schwartz DC, Hochstrasser M. A superfamily of protein tags: ubiquitin, SUMO and related modifiers. Trends Biochem Sci 2003; 28: 321-328.
  • 7 Deshaies RJ. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol 1999; 15: 435-467.
  • 8 Malakhova OA, Yan M, Malakhov MP. et al. Protein ISGylation modulates the JAK-STAT signaling pathway. Genes Dev 2003; 17: 455-460.
  • 9 Pickart CM, Eddins MJ. Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 2004; 1695: 55-72.
  • 10 Hicke L, Dunn R. Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol 2003; 19: 141-172.
  • 11 Haupt Y, Maya R, Kazaz A. et al. Mdm2 promotes the rapid degradation of p53. Nature 1997; 387: 296-299.
  • 12 Jackson PK, Eldridge AG, Freed E. et al. The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol 2000; 10: 429-439.
  • 13 Petroski MD, Deshaies RJ. Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 2005; 6: 9-20.
  • 14 Huibregtse JM, Scheffner M, Howley PM. A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. Embo J 1991; 10: 4129-4135.
  • 15 Scheffner M, Huibregtse JM, Vierstra RD. et al. The HPV-16 E6 and E6-AP complex functions as a ubiquitin- protein ligase in the ubiquitination of p53. Cell 1993; 75: 495-505.
  • 16 Huibregtse JM, Scheffner M, Beaudenon S. et al. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc Natl Acad Sci USA 1995; 92: 2563-2567.
  • 17 Rotin D. WW (WWP) domains: from structure to function. Curr Top Microbiol Immunol 1998; 228: 115-133.
  • 18 Dikic I, Szymkiewicz I, Soubeyran P. Cbl signaling networks in the regulation of cell function. Cell Mol Life Sci 2003; 60: 1805-1827.
  • 19 Thien CB, Langdon WY. Cbl: many adaptations to regulate protein tyrosine kinases. Nat Rev Mol Cell Biol 2001; 2: 294-307.
  • 20 Pickart CM, Fushman D. Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol 2004; 8: 610-606.
  • 21 Schnell JD, Hicke L. Non-traditional functions of ubiquitin and ubiquitin-binding proteins. J Biol Chem 2003; 278: 35857-35860.
  • 22 Hicke L, Schubert HL, Hill CP. Ubiquitin-binding domains. Nat Rev Mol Cell Biol 2005; 6: 610-621.
  • 23 Polo S, Sigismund S, Faretta M. et al. A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature 2002; 416: 451-455.
  • 24 Wilkinson CR, Seeger M, Hartmann-Petersen R. et al. Proteins containing the UBA domain are able to bind to multi-ubiquitin chains. Nat Cell Biol 2001; 3: 939-943.
  • 25 Madura K. The ubiquitin-associated (UBA) domain: on the path from prudence to prurience. Cell Cycle 2002; 1: 235-244.
  • 26 Lima CD. CUE'd up for monoubiquitin. Cell 2003; 113: 554-556.
  • 27 Sancho E, Vila MR, Sanchez-Pulido L. et al. Role of UEV-1, an inactive variant of the E2 ubiquitin-conjugating enzymes, in in vitro differentiation and cell cycle behavior of HT-29-M6 intestinal mucosecretory cells. Mol Cell Biol 1998; 18: 576-589.
  • 28 Bonifacino JS, Traub LM. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 2003; 72: 395-447.
  • 29 Grossman SR, Deato ME, Brignone C. et al. Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science 2003; 300: 342-344.
  • 30 Yokouchi M, Kondo T, Sanjay A. et al. Src-catalyzed phosphorylation of c-Cbl leads to the interdependent ubiquitination of both proteins. J Biol Chem 2001; 276: 35185-35193.
  • 31 Holler D, Dikic I. Receptor endocytosis via ubiquitin- dependent and -independent pathways. Biochem Pharmacol 2004; 67: 1013-1017.
  • 32 Haglund K, Sigismund S, Polo S. et al. Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat Cell Biol 2003; 5: 461-466.
  • 33 Benmerah A, Poupon V, Cerf-Bensussan N. et al. Mapping of Eps15 domains involved in its targeting to clathrin-coated pits. J Biol Chem 2000; 275: 3288-3295.
  • 34 Gruenberg J. The endocytic pathway: a mosaic of domains. Nat Rev Mol Cell Biol 2001; 2: 721-730.
  • 35 Hofmann K, Falquet L. A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends Biochem Sci 2001; 26: 347-350.
  • 36 Di Guglielmo GM, Le Roy C, Goodfellow AF. et al. Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol 2003; 5: 410-421.
  • 37 Miaczynska M, Pelkmans L, Zerial M. Not just a sink: endosomes in control of signal transduction. Curr Opin Cell Biol 2004; 16: 400-406.
  • 38 Zhang Y, Moheban DB, Conway BR. et al. Cell surface Trk receptors mediate NGF-induced survival while internalized receptors regulate NGF-induced differentiation. J Neurosci 2000; 20: 5671-5678.
  • 39 Vieira AV, Lamaze C, Schmid SL. Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 1996; 274: 2086-2089.
  • 40 Sorkin A, Von Zastrow M. Signal transduction and endocytosis: close encounters of many kinds. Nat Rev Mol Cell Biol 2002; 3: 600-614.
  • 41 Sigismund S, Woelk T, Puri C. et al. Clathrin-independent endocytosis of ubiquitinated cargos. Proc Natl Acad Sci USA 2005; 102: 2760-2765.
  • 42 Baldwin Jr AS. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 1996; 14: 649-683.
  • 43 Pahl HL. Activators and target genes of Rel/NFkappaB transcription factors. Oncogene 1999; 18: 6853-6866.
  • 44 DiDonato JA, Hayakawa M, Rothwarf DM. et al. A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature 1997; 388: 548-554.
  • 45 Hatakeyama S, Kitagawa M, Nakayama K. et al. Ubiquitin- dependent degradation of IkappaBalpha is mediated by a ubiquitin ligase Skp1/Cul 1/F-box protein FWD1. Proc Natl Acad Sci USA 1999; 96: 3859-3863.
  • 46 Henkel T, Machleidt T, Alkalay I. et al. Rapid proteolysis of I kappa B-alpha is necessary for activation of transcription factor NF-kappa B. Nature 1993; 365: 182-185.
  • 47 Palombella VJ, Rando OJ, Goldberg AL. et al. The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 1994; 78: 773-785.
  • 48 Lin L, DeMartino GN, Greene WC. Cotranslational biogenesis of NF-kappaB p50 by the 26S proteasome. Cell 1998; 92: 819-828.
  • 49 Orian A, Gonen H, Bercovich B. et al. SCF(beta)(-TrCP) ubiquitin ligase-mediated processing of NF-kappaB p105 requires phosphorylation of its C-terminus by IkappaB kinase. Embo J 2000; 19: 2580-2591.
  • 50 Sears C, Olesen J, Rubin D. et al. NF-kappa B p105 processing via the ubiquitin-proteasome pathway. J Biol Chem 1998; 273: 1409-1419.
  • 51 Senftleben U, Cao Y, Xiao G. et al. Activation by IKKalpha of a second, evolutionary conserved, N kappa B signaling pathway. Science 2001; 293: 1495-1499.
  • 52 Xiao G, Harhaj EW, Sun SC. NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell 2001; 7: 401-409.
  • 53 Amir RE, Haecker H, Karin M. et al. Mechanism of processing of the NF-kappa B2 p100 precursor: identification of the specific polyubiquitin chain-anchoring lysine residue and analysis of the role of NEDD8-modification on the SCF(beta-TrCP) ubiquitin ligase. Oncogene 2004; 23: 2540-2547.
  • 54 Chung JY, Park YC, Ye H. et al. All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J Cell Sci 2002; 115: 679-688.
  • 55 Chen G, Goeddel DV. TNF-R1 signaling: a beautiful pathway. Science 2002; 296: 1634-1635.
  • 56 Hsu H, Huang J, Shu HB. et al. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 1996; 4: 387-396.
  • 57 Ting AT, Pimentel-Muinos FX, Seed B. RIP mediates tumor necrosis factor receptor 1 activation of NF-kappaB but not Fas/APO-1-initiated apoptosis. Embo J 1996; 15: 6189-6196.
  • 58 Wu CJ, Conze DB, Li T. et al. NEMO is a sensor of Lys 63-linked polyubiquitination and functions in NFkappaB activation. Nat Cell Biol 2006; 8: 398-406.
  • 59 Ea CK, Deng L, Xia ZP. et al. Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 2006; 22: 245-257.
  • 60 Deng L, Wang C, Spencer E. et al. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 2000; 103: 351-361.
  • 61 Wang C, Deng L, Hong M. et al. TAK1 is a ubiquitin- dependent kinase of MKK and IKK. Nature 2001; 412: 346-351.
  • 62 Kanayama A, Seth RB, Sun L. et al. TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol Cell 2004; 15: 535-548.
  • 63 Kobayashi N, Kadono Y, Naito A. et al. Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. Embo J 2001; 20: 1271-1280.
  • 64 Andersen PL, Zhou H, Pastushok L. et al. Distinct regulation of Ubc13 functions by the two ubiquitinconjugating enzyme variants Mms2 and Uev1A. J Cell Biol 2005; 170: 745-755.
  • 65 Habelhah H, Takahashi S, Cho SG. et al. Ubiquitination and translocation of TRAF2 is required for activation of JNK but not of p38 or NF-kappaB. Embo J 2004; 23: 322-332.
  • 66 Yamamoto M, Okamoto T, Takeda K. et al. Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling. Nat Immunol 2006; 7: 962-970.
  • 67 Sun L, Deng L, Ea CK. et al. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol Cell 2004; 14: 289-301.
  • 68 Zhou H, Wertz I, O'Rourke K. et al. Bcl10 activates the NF-kappaB pathway through ubiquitination of NEMO. Nature 2004; 427: 167-171.
  • 69 Huang TT, Wuerzberger-Davis SM, Wu ZH. et al. Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell 2003; 115: 565-576.
  • 70 Brummelkamp TR, Nijman SM, Dirac AM. et al. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 2003; 424: 797-801.
  • 71 Kovalenko A, Chable-Bessia C, Cantarella G. et al. The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 2003; 424: 801-805.
  • 72 Trompouki E, Hatzivassiliou E, Tsichritzis T. et al. CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 2003; 424: 793-796.
  • 73 Vaux DL, Silke J. IAPs, RINGs and ubiquitylation. Nat Rev Mol Cell Biol 2005; 6: 287-297.
  • 74 Reiley WW, Zhang M, Jin W. et al. Regulation of T cell development by the deubiquitinating enzyme CYLD. Nat Immunol 2006; 7: 411-417.
  • 75 Massoumi R, Chmielarska K, Hennecke K. et al. Cyld inhibits tumor cell proliferation by blocking Bcl- 3-dependent NF-kappaB signaling. Cell 2006; 125: 665-677.
  • 76 Evans PC, Ovaa H, Hamon M. et al. Zinc-finger protein A20, a regulator of inflammation and cell survival, has de-ubiquitinating activity. Biochem J 2004; 378: 727-734.
  • 77 Wertz IE, O'Rourke KM, Zhou H. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 2004; 430: 694-699.
  • 78 Makarova KS, Aravind L, Koonin EV. A novel superfamily of predicted cysteine proteases from euka eukaryotes, viruses and Chlamydia pneumoniae. Trends Biochem Sci 2000; 25: 50-52.
  • 79 Opipari Jr AW, Boguski MS, Dixit VM. The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein. J Biol Chem 1990; 265: 14705-14708.
  • 80 Beyaert R, Heyninck K, Van Huffel S. A20 and A20-binding proteins as cellular inhibitors of nuclear factor-kappa B-dependent gene expression and apoptosis. Biochem Pharmacol 2000; 60: 1143-1151.
  • 81 Lee EG, Boone DL, Chai S. et al. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science 2000; 289: 2350-2354.
  • 82 Boone DL, Turer EE, Lee EG. et al. The ubiquitinmodifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 2004; 5: 1052-1060.
  • 83 Gorelik L, Flavell RA. Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 2000; 12: 171-181.
  • 84 Shull MM, Ormsby I, Kier AB. et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 1992; 359: 693-699.
  • 85 Massague J, Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. Embo J 2000; 19: 1745-1754.
  • 86 Lin X, Liang M, Feng XH. Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-beta signaling. J Biol Chem 2000; 275: 36818-36822.
  • 87 Zhu H, Kavsak P, Abdollah S. et al. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 1999; 400: 687-693.
  • 88 Bonni S, Wang HR, Causing CG. et al. TGF-beta induces assembly of a Smad2-Smurf2 ubiquitin ligase complex that targets SnoN for degradation. Nat Cell Biol 2001; 3: 587-595.
  • 89 Zhang Y, Chang C, Gehling DJ. et al. Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proc Natl Acad Sci USA 2001; 98: 974-979.
  • 90 Kavsak P, Rasmussen RK, Causing CG. et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell 2000; 6: 1365-1375.
  • 91 Bai Y, Yang C, Hu K. et al. Itch E3 ligase-mediated regulation of TGF-beta signaling by modulating smad2 phosphorylation. Mol Cell 2004; 15: 825-831.