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Abstract: In this paper I propose to reflect on contemporary philosophy of 
mathematics. I argue that the impartiality to methodology that is present 
in the current practice of philosophy of mathematics is an intellectual vice 
of our research community because it leaves our philosophical methods 
to engage with mathematics implicit. This hides difficulties our research 
community faces, difficulties our students can reasonably expect to 
learn about and which we need to engage with to overcome them. To be 
virtuously open-minded about methodology is not to be impartial about 
methodology but rather to critically assess the proposals on offer in a public 
debate.
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Introduction

The philosophy of mathematics is not a homogeneous whole. The common story 
is that there is a mainstream philosophy of mathematics and a diverging trend, 
the so-called philosophy of mathematical practice. The former is concerned with 
issues surrounding the ontology of mathematics and the foundational debate. 
What the latter is concerned with is less clear. Following the inclusive lines of the 
Association for the Philosophy of Mathematical Practice, it includes all philosophical 
works about mathematics which do not fit under the ‘mainstream’ heading.
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This split of the philosophy of mathematics can be traced back to Aspray’s and 
Kitcher’s ‘Opinionated Introduction’ (1988). They individuate two traditions 
which they call ‘orthodox’ and ‘maverick’. For them, the orthodox tradition 
focusses mainly on the metaphysical problems surrounding mathematics. The 
maverick tradition is, according to Aspray and Kitcher, championed by Lakatos 
and is concerned with a philosophical engagement of the methodology of 
mathematics.1 

Twenty years later, in the introduction to his book, Mancosu (2008) argues that 
the philosophy of mathematics has developed further into three traditions: the 
mavericks on the one side, the orthodox or, as he now calls them, mainstream 
tradition on the other and somewhere in between is what he calls ‘the philosophy 
of mathematical practice’. Unlike the mavericks, which have, according to 
Mancosu (2008, p. 5), an “iconoclastic attitude” with respect to mainstream 
philosophy of mathematics, Mancosu’s philosophers of mathematical practice 
do not wish to criticise the mainstream tradition. Instead, they claim that some 
issues are worthy of philosophical attention which thus far have been ignored 
by the mainstream tradition, such as “fruitfulness, evidence, visualization, 
diagrammatic reasoning, understanding, explanation and other aspects of 
mathematical epistemology which are orthogonal to the problem of access to 
‘abstract objects’” (Mancosu, 2008, pp. 1–2). For Mancosu, the mavericks were 
rebels who wanted to change how philosophy of mathematics is done. Mancosu’s 
philosophers of mathematical practice, by contrast, wish only to extend the scope 
of the philosophical questions asked about mathematics; they do not challenge 
the mainstream tradition.

Mancosu’s terminology is, in light of contemporary usage, somewhat unhappy. 
For Mancosu there is a difference between the mavericks and the philosophers 
of mathematical practice; Lakatos is a maverick and not a philosopher of 
mathematical practice on Mancosu’s account.  This conflicts with the wide-
spread narrative of Lakatos as the founding father of philosophy of mathematical 
1	 Authors who have subsequently repeated Aspray’s and Kitcher’s narrative, such as Mancosu 

(2008) and Carter (2019), have often failed to mention what Aspray and Kitcher readily admit, 
namely “a bias toward English language literature and to research conducted by mathematicians 
and historians of the United States” in their presentation of the state of the field (Aspray & 
Kitcher, 1988, p. 20). Such authors tacitly excuse Aspray’s and Kitcher’s bias rather than making 
it part of the narrative, thereby deforming what we can (and should) learn from Aspray and 
Kitcher. 
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practice.2 I will use the more common conception in this paper, referring to 
‘Mancosu’s philosophy of mathematical practice’ when necessary. 

Aspray and Kitcher (1988) had presented the practice-based approaches 
to philosophy of mathematics as a largely unified camp. By 2008, Mancosu 
already saw a divide. In 2014, Van Bendegem tells us that there are many more 
divisions within this camp. Van Bendegem (2014) distinguishes eight partly 
overlapping approaches to a practice-based philosophy of mathematics. The 
Lakatosian approach focusses on processes in mathematics rather than final 
mathematical products. The descriptive analytical naturalising approach aims to 
explicate mathematical concepts such as ‘proof ’ by describing how they are used 
by the mathematicians. The normative analytical naturalising approach explicates 
mathematical concepts by subjecting studies on how mathematicians use these 
concepts to philosophical criticism. The sociology of mathematics focusses mainly 
on the community or group phenomena found in mathematical practices. 
Educationalists take seriously the idea that for mathematical communities to form, 
agents need to be educated—this forges links with the works of the mathematics 
educators. The ethnomathematics approach stresses that mathematical practices are 
culturally embedded, which creates ties to the work done on ethnomathematics. 
Evolutionary biology of mathematics inquires how mathematical knowledge is 
biologically encoded in our human body. Studies in the cognitive psychology of 
mathematics aim to understand the psychological influences on mathematical 
thinking.

Carter (2019) also highlights the heterogeneous nature of the practice-based 
camp. She identifies three, sometimes overlapping, strands: an agent-based, a 
historical and an epistemological strand. Two of these strands Carter distinguishes 
further into different flavours. The agent-based strand holds that a philosophy of 
mathematics should (or has to) take the human being doing mathematics into 
account. According to Carter, there are two flavours. One views mathematics 
as a fundamentally social activity and has strong ties to sociology. The other, 
Carter calls it the ‘pragmatic’ flavour, is mainly concerned with an agent-
based understanding of mathematical knowledge. The historical strand in the 
philosophy of mathematical practice is, according to Carter, mainly concerned 
with the fact that mathematics has a history and the philosophical issues arising 
from it. Mathematics is viewed as “the product of certain activities and not a 
2	 For Lakatos as a founding father see, e.g., Van Bendegem (2014). For a counter-argument 

to the Lakatos-as-the-founding-father narrative see Rittberg (2018). For use of Mancosu’s 
terminology see, e.g., Cellucci (2017).
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static theory” (Carter, 2019, p. 11). Carter discusses three flavours of this. One 
aims to reveal the philosophical issues in mathematical development. Another 
investigates the philosophical beliefs of the mathematicians themselves. The 
third aims to develop “philosophical tools in order to understand the history 
of mathematics”.3 The last strand, epistemological philosophy of mathematical 
practice, aims to answer traditional questions, such as about “the nature of 
mathematical objects and what constitutes our knowledge of them” (Carter, 
2019, p. 16), by engaging with “real mathematics” (Corfield, 2003) and “not 
some idealised notion of the discipline” (Leng, 2002). 

These survey articles reveal that the philosophy of mathematical practice is 
not homogeneous. The term ‘philosophy of mathematical practice’4 provides 
a forum to discuss a plethora of philosophical questions and approaches to the 
philosophy of mathematics. On the upside of this, no voice needs to go unheard 
just because it does not fit within some pre-established boxes. The downside 
is that throwing all those philosophical works on mathematics which do not 
fit into the mainstream box into the practice-based box discourages critical 
methodological assessment within this box. Carter (2019) gets at this when she 
correctly presents the philosophy of mathematical practice as a loosely connected 
but partly disjointed enterprise. 

Because attention to “[mathematical] practice is to a greater or lesser extent on 
the agenda of basically all active philosophers of mathematics” (Ferreirós & Gray, 
2006, p. 12), the line between mainstream and practice-based philosophy of 
mathematics is blurry at best. We should ask ourselves how useful the mainstream/
practice-based terminology is to talk about our field. It is my contention that 
the distinction is useful as a means to organise the field, precisely because the 
inherent vagueness of ‘practice-based approach’ avoids boxed-in thinking. As a 
philosophical tool to think about the field, however, it has become unsuitable. 
The term ‘philosophy of mathematical practice’ suggests dividing lines where 
there may not be any (cf. Ferreirós & Gray, 2006) and fails to draw attention 
to the marked differences of approaches in the field (Carter, 2019). For this 
3	 Recall here Lakatos’ paraphrase of Kant: “the history of mathematics, lacking the guidance of 

philosophy, has become blind” (Lakatos, 1976, p. 2).
4	 There is some disagreement whether one should speak of the singular practice or the plural 

practices when speaking of the philosophy of mathematical practice[s]. This may depend on 
whether practice is a mass- or a count-noun. But the term ‘practice’ may also be like the term 
‘water’: a mass noun where it can make sense to add the ‘s’ to speak of treacherous waters, for 
example. My personal preference is to speak of a philosophy of mathematical practices in this 
water-like sense. In this section, however, I avoid using the ‘s’ to align with the terminology of 
Mancosu (2008) and Carter (2019).
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reason, I will not use the term ‘philosophy of mathematical practice’ in what 
follows. I will use ‘philosophy of mathematics’, by which I intend any kind 
of philosophical work about mathematics, practice-based or otherwise. That 
said, my examples are taken mostly from philosophical works that engage with 
mathematics through case studies of its practice. This is because of my personal 
interest in (and familiarity with) such works.

Aspray’s and Kitcher’s, Mancosu’s, Van Bendegem’s, and Carter’s discussions of 
the philosophy of mathematics all individuate the various traditions, approaches 
or strands in the philosophy of mathematics by their aims and questions.5 What 
methods these philosophers use to answer their questions remains secondary. The 
spirit of especially Mancosu’s and Carter’s work is to allow any kind of reasonable 
method, whereby ‘reasonable’ remains unstated and unclarified. I argue in this 
paper that in its current form, this kind of impartiality to the methods used (a) 
fails to realise that the different philosophical methods employed have led to 
conflicting results and (b) does not provide sufficient methodological guidelines 
on how philosophy of mathematics is and should be done. What we need, 
so is the claim of this paper, is a debate about the methods of philosophy of 
mathematics.

A first example of conflicting methods

Mathematical proofs are not formal derivations. A formal derivation is defined 
according to the strict definition of ‘proof ’ as used in Hilbert-style proof-theory. 
The kind of proofs one finds in mathematical journals, I call them mathematical 
proofs, differ from formal derivations. They employ natural language and/or 
pictures, have gaps and so on.6 

According to a widely spread assumption, mathematical proofs merely help to 
facilitate communication. The epistemologically relevant parts of a mathematical 
proof are all captured by its formal derivation.7 One of the staple results of 
5	 Other noteworthy survey papers that could not be engaged with here due to limitations of 

space include Löwe (2016), Giardino (2017), Löwe & Van Kerkhove (2019), and Hamami & 
Giardino (forthcoming).

6	 Mathematical proofs have become a subject of study: Manders (2008), Tanswell (2015), 
Andersen (2017a; 2018), Andersen et al. (2019), Sørensen et al. (2019).

7	 See, for example, Feferman’s Formalisability Thesis (2012).
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the philosophy of mathematical practice is that this assumption is incorrect.8 
Should mathematical proofs then not replace the formal derivations in our 
epistemology of mathematics? Those who already think that we should “study 
what mathematicians actually do” and “take mathematical practice seriously”9 
will readily agree. But why? The idea seems to be that here we have some 
description of what mathematical practice is like and we should account 
for that. “No idealisation!” was the rallying cry we might take from Leng’s 
quotation given above. But philosophers idealise.10 Much of philosophy aims 
to give answers to general questions, and to do this philosophers have to move 
away from the specifics. They thus have to ensure that their idealisations are 
not philosophically damaging, rather than to avoid idealisations entirely. In 
what way is it philosophically damaging to assume that mathematical proofs 
are essentially formal derivations? This points towards a possible defence for the 
formal derivationist’s position. From Leitgeb (2009) we can learn, the formal 
derivationists might argue, that an understanding of mathematical reasoning 
which does not replace mathematical proofs with formal derivations is thus far 
lacking. To fully replace our formal derivation account of mathematical proofs 
in our epistemology of mathematics thus demolishes our accounts thereof. It 
is better, so the argument of the formal derivationist could continue, to have 
an epistemological account, even if it might be idealised and perhaps even 
philosophically damaging at times, than to have no epistemological account at all. 
Thus, the formal derivationists might conclude, mathematical proofs should not 
replace formal derivations in our epistemological accounts of mathematics.11 In 
fact, naïve derivationist’s accounts, which take mathematical proofs to be formal 
derivations, have been overcome by more sophisticated versions which assume 
that the mathematical proof sketches (MacLane, 1986), indicates (Azzouni, 2004) 
or is a recipe or description for obtaining (Avigad, 2005) the formal derivation. 
Such sophisticated versions of derivationism aim to cater to the demand that 
8	 See, for example, Van Bendegem (1988; 1990), Rav (1999), Larvor (2008), Löwe & Müller 

(2008), Mancosu (2008), Tanswell (2015).
9	 These are two mantras one often hears from so-called philosophers of mathematical practice(s).
10	 I do not wish to suggest here that Leng thinks otherwise. Rather, I use the quotation from Leng 

as a rhetorical device to draw attention to the fact that philosophy, by its nature, idealises.
11	 Somewhat ironically, the formal derivationists find support for the above-presented argument 

in Lakatos, the arch-maverick in Aspray’s and Kitcher’s as well as Mancosu’s book. Lakatos 
(1978) has convincingly argued that a fallibilism which discards our current theory as soon as 
it is falsified is naïve. Falsified theories are only discarded once a better one is at hand to replace 
it. Philosophers of mathematics wishing to replace the derivationist account, as the formal 
derivationists could claim, still need to provide such a better theory. Larvor (2017) takes this 
line of reasoning seriously and explores the possibility of extending a narrow epistemic model 
of informal proofs to a wider range. 
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philosophy should not idealise too much whilst still providing an answer to 
philosophical riddles such as “what is validity?”.12

In this section, I have rehearsed a well-known debate in the philosophy of 
mathematics with the aim of making visible how different methods are used 
and have led to conflicting results in the philosophy of mathematics. It may 
however be argued that derivationism and non-derivationism are philosophical 
views rather than methods. This would mean my example would be ill chosen.

Is derivationism a method or a philosophical view?  In the philosophical 
debate about what ensures the validity of a mathematical proof, derivationism 
provides an answer. Another answer is currently under development by the 
non-derivationists (e.g., Larvor, 2017). In this light, derivationism seems more 
a view than a method because it is a position one might take in the ongoing 
philosophical debate about what ensures the validity of a mathematical proof. On 
the other hand, to embrace derivationism entails (or presupposes) a willingness 
to abstract away from the proofs as they present themselves in mathematical 
practice. The non-derivationist also allows such abstraction but aims to remain 
closer to mathematical practice than the derivationist. How far one allows oneself 
to abstract away from the subject of one’s study is, however, more a method than 
a view. That is, in this light derivationism is a method rather than a view. And 
this makes visible the entanglement between our methods and our views. We 
may hold certain views because we deem certain methods (non-)admissible just 
as we may be led to embrace certain methods because of the views we hold. The 
derivationism/non-derivationism debate is thus neither solely about methods 
nor solely about views: it is about both.

Derivationism provides a widely accepted epistemological narrative with answers 
to philosophical questions such as “What is validity?” or “Why is mathematical 
knowledge epistemologically special?”. Non-derivationism distorts less our 
view on mathematics as performed by the mathematicians. On its own, this 
does not suffice as an argument for either approach. Currently, both are in use 
12	 The debate described above is about how proofs in mathematics work. There is also a debate 

about what should count as a proof in mathematics. Brouwer, Prawitz, Martin-Löf, and others 
have proposed constructivist accounts of proof which challenge the Hilbert-style formal 
derivation discussed above. There are points of contact between the debate on how proofs 
work and the debate about what should count as proof. Gentzen (1935) viewed his Natural 
Deduction as natural because of its (alleged) closeness to mathematical practice. Voevodsky’s 
Univalent Foundation axiom formalises, according to the authors of HoTT (2013, p. 6), a 
certain abuse of notation common in mathematical practice. A closer study of these matters is 
beyond the scope of this paper.
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side-by-side in the philosophy of mathematics. This introduces an incoherence 
into our philosophical accounts of mathematics. Van Bendegem made a similar 
point when he wrote about the heterogeneity of approaches in the philosophy 
of mathematics:

One might think that perhaps we are dealing here with a division of labour 
of a vast field to explore, but such a division suggests that all the parts can 
be put together again to form a minimally coherent whole. And that is (at 
present) definitely not the case. (Van Bendegem, 2014, p. 222)

Incoherence within a research tradition can lead to progress because it invites the 
researchers to overcome the incoherence. Incoherence can lead to disagreement, 
such as, for example, over whether this or that philosophical method delivers a 
satisfactory philosophical account in response to a given question. Virtuously 
handled, such disagreement is positive. It can inspire argument and research 
which ultimately can lead to progress. For this to happen, for incoherence to lead 
to virtuous disagreement and progress, the incoherence needs to be recognised as 
such. To deem the involved conflicting positions to be simply different schools 
of thought which should be allowed to co-exist side-by-side is an ad hoc solution 
which side-steps the problem; this is indifference rather than tolerance.13 Instead, 
the incoherence within a research tradition should be critically assessed with the 
aim to overcome it. It may still turn out that there really are different schools 
of thoughts in play, all of which have their own merits. But in this case, there 
would be an argument why the incoherence exists and is acceptable in the research 
community, rather than the mere ad hoc solution of deeming each opposing 
position worthy before critical assessment.

Practices: how to find out?

An implicit assumption in the above point about proofs is that it is a fact of 
the matter about mathematical practices that mathematicians do not write 
down proofs as formal derivations. This point has been amply argued for and 
there is little reason to doubt it.14 The larger question is however how one 
can find out whether something is a fact of the matter about mathematical 
13	 From Valitova (1998, p. 23) we can learn that “tolerance involves an interested relation to the 

other”. On indifference, see Lillehammer (2014a, b).
14	 See Van Bendegem (1988; 1990), Rav (1999), Larvor (2008), Löwe & Müller (2008), Mancosu 

(2008), Tanswell (2015).
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practice. This question is hardly ever addressed in the works on the philosophy 
of mathematics.15  

Here is a list of methods that have been used by philosophers of mathematics to 
find out about mathematical practice:16

1.	 Reading the works of mathematicians: e.g., reading technical mathematical 
works (Larvor, 2010); reading non-technical works (Rittberg et al., 2018); 
corpus analysis (Johansen et al., 2018).

2.	 Historical approaches: e.g., accessing philosophical questions through 
previous historical and/or biographical work (Andersen, 2017b); accessing 
social practices of mathematics through historical sources (Gerovitch, 2016).

3.	 Interviews with mathematicians: e.g., structured interviews (Weber, 2008); 
unstructured interviews (Maddy, 1988a, b).

4.	 Anthropological approaches: e.g., embedding with mathematicians (Kaufman, 
2016); longitudinal studies (Andersen et al., 2019); observations of 
mathematical activity (Barany & MacKenzie, 2014); analysis of internet 
resources (Martin, 2015); ethnomathematics (François & Vandendriesche, 
2016).

5.	 Quantitative empirical research: e.g., questionnaire studies (Inglis & Aberdein, 
2014).

6.	 Report of experiences: e.g., collaboration with mathematicians (De Toffoli 
& Giardino, 2014); reporting one’s own mathematical research experience 
(Rav, 1999).

7.	 Cognitive science: e.g., theoretical studies (Núñez, 2005); empirical studies 
(van der Ham et al., 2017).

Methods to engage with a practice are not unproblematic. Philosophers 
of science know this. Pitt (2008), for example, speaks of a “dilemma of case 
studies”, in which we either start with our philosophical view, thereby risking to 
cherry-pick case studies that support our views, or start with the case studies and 
then face an inductive fallacy when aiming to say something general.17 Besides 
these general worries, the individual methods face problems of their own. Social 
scientists know this. They write books about, for example, how interviews 
should be conducted. In the philosophy of mathematics, however, there is very 
15	 Notable exceptions include Löwe et al. (2010) and Löwe & Van Kerkhove (2019).
16	 This list has been compiled in joint work with Henrik Kragh Sørensen. It was originally 

published in Rittberg & Van Kerkhove (2019).
17	 For answers to this dilemma see Burian (2001; 2002), Schickore (2011), Chang (2011), Scholl 

& Räz (2016), Rittberg & Van Kerkhove (2019).
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little discussion about methods, especially in print. Young researchers are left to 
find out for themselves. These are the methods of their trade. They are neither 
obvious, nor unproblematic, nor should young researchers be stuck with the 
opinions of their academic tutors. Young researchers can reasonably expect to 
be taught the basics of their field. The philosophy of mathematics needs a body 
of knowledge which critically assesses our philosophical methods (to engage 
with mathematical practices and otherwise). A methodological debate about 
philosophy of mathematics would, with time, provide such a body of knowledge.

Conflicting pictures of mathematical practice

The point about philosophical methods to individuate features about 
mathematical practice can be strengthened by realising that different methods 
have already led to different results about what mathematical practice is like. 
The most well-known of these might be Lakatos’ description of the dialectical 
movement of the concept of a polyhedron in his Proofs and Refutations and the 
counter-claim that this is a one-off rather than a feature of mathematical practice 
is general.18 More recent examples of this are the cases Inglis and Aberdein 
against Steiner and Rittberg against Maddy.19 Inglis and Aberdein claim that “a 
common methodological move made by philosophers of mathematics” is to offer 
an example of a piece of mathematics, assert that this piece of mathematics has 
a certain property and “appeal to the reader’s intuitions for agreement” (Inglis 
& Aberdein, 2016, p. 2). Inglis and Aberdein call such philosophers exemplar 
philosophers. 

In Inglis and Aberdein (2016), the authors engage with Steiner’s account of 
the explanatoriness of a proof. Feferman (1969) suggests that those proofs are 
more explanatory that are more general. Steiner (1978) presents a proof which 
is, according to him, more general yet not explanatory, relying on his readers 
to share his intuitions on the explanatoriness of the proof. Thus, Steiner is an 
exemplar philosopher in Inglis’ and Aberdein’s sense. Steiner gives his own 
characterisation of explanatoriness: an “explanatory proof makes reference to a 
characterizing property of an entity or structure mentioned in the theorem, such 
that from the proof it is evident that the result depends on the property” (Steiner, 
18	 Larvor (1997) engages with the one-off claim in some detail.
19	 Further examples, which will not be discussed in detail here, include Friend’s (2014) argument 

that set theorists are more pluralistic than Maddy realises. See also Rittberg & Van Kerkhove 
(2019) on this point.
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1978, p. 143). Steiner supports his understanding of explanatoriness by two 
examples: a proof which is, according to his expert introspection, explanatory 
and which fits his characterisation and a proof which is, again according to him, 
not explanatory and which does not fit his characterisation. 

In their work, Inglis and Aberdein rely on statistical methods and results. They 
chose a proof which had been deemed worthy of inclusion in Proofs from The 
Book and presented this proof in an online study. One hundred and twelve 
American mathematicians participated in the study. Inglis’ and Aberdein’s results 
showed a remarkable disagreement amongst mathematicians on proof-appraisal. 

Steiner argues that a general account of the explanatoriness of proofs can be cashed 
out by relying on expert introspection (or ‘intuition’ as Inglis and Aberdein call 
it). Inglis and Aberdein use statistical methods to argue that whether a proof is 
seen as explanatory is largely idiosyncratic. The use of statistical methods thus 
leads to results which conflict with the results of a method which heavily relies 
on expert introspection. Steiner, Inglis and Aberdein all wish to be sensitive to 
mathematical practice, so whom should we follow here? Which methods do we 
deem acceptable and why?

Another case in point is the case Rittberg against Maddy. According to Maddy 
(1997; 2011), some methodological debates in set theory have been resolved 
but the philosophical debates have not, from which she follows that the 
methodological debates have not been resolved on philosophical grounds (Maddy, 
1997, p. 191). She thus excludes the metaphysical views of the set theorists from 
her philosophical analysis of the practice, dubbing them as colourful asides which 
are not part of the evidential structure of the subject (Maddy, 2011, p. 53). In 
Rittberg (2016a, b) I argue against this. I analyse programmatic papers of two set 
theorists, Woodin and Hamkins, to argue that the metaphysical beliefs of these 
set theorists can stand in a reciprocal relationship to the way these set theorists 
practise set theory.

My investigation of set-theoretic practice suggests that metaphysical beliefs 
can play a role in mathematical reasoning practices. According to Maddy, such 
metaphysical beliefs are colourful asides. We both aim at describing what the 
philosophically relevant parts of the practice are like, but we reach different 
conclusions. With whom should a philosopher who wishes to take mathematical 
practice seriously side?
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Open-mindedness

Writing about the three main types of methodologies used in the social sciences 
(quantitative, qualitative and mixed methods) Symonds and Gorard write:

in the education research community we have observed both student and 
seasoned researchers thinking that there are either only three ways to do 
research or that research must align with one of these categories for it to be 
valid. (Symonds & Gorard, 2010, p. 122)

Symonds and Gorard correctly point out that such thinking inhibits creativity. 
Hence, a methodological debate about the philosophy of mathematics should not 
aim to reduce the philosophy of mathematics to a few standard methodologies. 
Notice how this links back to the point above about disagreement potentially 
leading to progress. We should want different and disagreeing methodologies, 
because it can further the progress of the field.

Open-mindedness is an intellectual virtue.20 It encourages us to be open to the 
idea of multiple methodologies of the philosophy of mathematical practice being 
in use side-by-side. Symonds’ and Gorard’s can be considered as an argument 
for open-mindedness. But being open-minded does not mean to allow all 
methodologies a place at our table, to use Chang’s (2012) metaphor. Open-
mindedness is different from what Chang calls relativism. For Chang, “relativism 
involves a renunciation of judgement and commitment at least to a degree, which 
pluralism most definitely does not” (Chang, 2012, p. 261). Open-mindedness 
encourages us to probe each proposed methodology without demanding that only 
one methodology shall be judged worthy. That is, open-mindedness encourages 
a pluralism about methodologies. An important difference between relativism in 
Chang’s sense and pluralism is that the pluralist has means to block unwanted 
or unsuited methodologies. Not everyone is graced with a seat at our table. But 
this means that we need to think about which methodologies we want. When 
Mancosu (2008) and Carter (2019) fail to propagate the critical assessment of 
the methods of philosophy of mathematics, they encourage indifference rather 
than tolerance and open-mindedness. A virtuously open-minded approach to 
the philosophy of mathematics not only encourages but also critically assesses 
diversity in methodology.
20	 To maintain focus in this paper I will treat ‘virtue’ as a primitive notion. For insightful discussions 

of the concept see Roberts & Wood (2007). For analytical reflection and engagement with 
open-mindedness as an intellectual virtue see Zagzebski (1996). 
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To state it clearly, I argue that we should want a variety of methodologies in the 
philosophy of mathematics. This we have already. Furthermore, I argue that we 
should critically assess these methodologies. This is currently (largely)21 lacking.

A virtuous practice of philosophy of mathematics

Just as mathematics is something that humans do, a practice, so is the 
philosophy of mathematics something that humans do, a practice as well. My 
argument is about what kind of practice the philosophy of mathematics should 
be. My argument has ethical undertones because it asks what kind of virtues 
the participants of this practice should strive to manifest. I have given some 
descriptions of how philosophy of mathematics is practised today in order to 
highlight some deficiencies it currently has. I argued that young researchers in 
philosophy of mathematics can reasonably expect to be taught the basics of 
their trade. It is thus a deficiency of the contemporary practice of philosophy 
of mathematics that there is currently no body of knowledge discussing these 
basic methods. Furthermore, I argued that narratives about the field which 
embrace the different methodologies on offer without critical engagement 
propagate indifference rather than open-mindedness. To be virtuously open-
minded is to critically reflect. For the practice of philosophy of mathematics to 
be virtuously open-minded, so I argue, we need an open and public debate about 
the methodologies on offer. 

One might also give a functional argument here. Having a body of knowledge 
in which the methods of philosophy of mathematics are critically assessed will 
help with teaching; allows to couch funding applications into the context of an 
ongoing debate; may provide guidance to what papers and conferences will be 
of value to specific researchers; and, lest we forget, it will facilitate research by 
making visible the pitfalls of the various methodologies. However, in this paper 
I wish to concentrate on the argument about a virtuous practice of philosophy of 
mathematics. An elaboration on the functional argument is left for a later date.

In a virtuous practice of philosophy of mathematics there should be reflection on 
how its practitioners conduct research. It should allow for different approaches 
to provide avenues for development yet be critical enough to establish sufficient 
cohesion within the community. Importantly, such critical self-reflection needs 
21	  For references of exceptions, see footnote 15.
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to be public. It is not enough for the single researcher to have opinions on 
methodological questions. These opinions need to be made public and critically 
assessed by the other practitioners. Only then can the practice be said to be 
critically self-reflective. Such virtuous critical self-reflection, as I have aimed to 
make visible in this paper, is thus far lacking in the philosophy of mathematics.

Becoming aware of one’s own methodology

It is essential to a public methodological debate to discuss philosophical questions 
as well because methods can only be critically assessed in light of what they 
are methods for. For example, it might be argued that Steiner (1978) aimed at 
providing a conceptual analysis of ‘explanatoriness of a proof ’, whereas Inglis and 
Aberdein (2016) aimed at collecting sociological evidence about mathematical 
practice. The argument is that the methods these authors employ lead to different 
results because they serve to answer different questions. 

We need to become aware of and discuss the aims we have in philosophising about 
mathematics. Do we aim to be practice-based, i.e. learning from mathematics 
as practised to guide our solution to philosophical puzzles? Or do we aim to 
be practice-oriented, i.e. critically reflect on mathematical (research?) practices 
with an eye towards their improvement? Or are we interested in shaping public 
perceptions about mathematics, perhaps puncturing holes into overly idealised 
views about mathematics? Or do we aim at helping with mathematics education? 
And once we have answered questions such as these we should provide reasons 
as to why our aims are worthy and how they could be achieved. Most of us are 
funded by public money. A simple “because I like it” is not enough. Cui bono, 
who benefits from the works we provide? Answers to points such as these will 
influence what kind of questions we ask and which methods are suitable to do so.

There is then a connection between the aims we have, the questions we ask and 
the methods we use. I mean all of this when I speak of methodology. Thus, a 
methodology includes the methods used, the questions asked, the aims had, and 
our reasons for such methods, aims and questions. As argued above, we should 
be open-minded about methodologies. That is, not only should we embrace 
that methodologies already differ in the aims they serve, questions they ask 
and methods they use, but we should actively pursue critical engagement with 
these elements. It is this active critical engagement with the methodologies that 
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Mancosu (2008) and Carter (2019) discourage when they call for an extension 
of the philosophy of mathematics rather than a methodological debate.

To be aware of one’s aims, to find relevant questions, to understand one’s 
methods and to be able to provide reasons for these elements, all this is part 
of good philosophical practice. To call for a methodological debate may thus 
look like calling for good philosophical practice, which seems superfluous. The 
answer to this worry is that a methodological debate is public. This forces us to 
articulate our methodologies more clearly. Our reasons for our methodologies 
need to be stronger because they no longer only need to convince ourselves. 
Problems we have overlooked will be flagged by the participants of the debate. 
A methodological debate does not ensure good philosophical practice, but it 
contributes to it.

Beginnings of a methodological debate

Virtuous critical self-assessment entails to praise what one finds worthy about 
oneself. Some philosophers have already begun to publicly debate methodologies 
in the philosophy of mathematics. Larvor (2001) works out what a Lakatosian 
dialectical philosophy of mathematics might look like. More comprehensive is 
a methodology which is currently under development, the so-called empirical 
philosophy of mathematics (Buldt et al., 2008; Löwe & Müller, 2008; 2010; 
Müller-Hill, 2009; Löwe et al., 2010).22 An already fully developed methodology 
is Maddy’s Second Philosophy (Maddy, 1997; 2007; 2011).

Philosophers of mathematics might look to other disciplines for inspiration and 
guidance for a methodological debate about their field. The social sciences have 
a long tradition of debating methodological issues (the qualitative/quantitative 
debate) and philosophers of mathematics might learn from them. More recently, 
some philosophers interested in scientific practices have started to critically assess 
their methods. Their works will be of particular interest to a methodological 
debate in the philosophy of mathematics due to the ties and similarities between 
mathematics and the sciences.23

22	 For criticism see, e.g., Pantsar (2015).
23	 Examples include Rouse (1998), Soler et al. (2014), Sauer & Scholl (2016).
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Conclusion

Philosophers of mathematics have learned that it is valuable to critically reflect 
upon the practice of mathematics. It is now time to realise that it is valuable to 
critically reflect upon the practice of the philosophy of mathematics as well.
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