American Association for Cancer Research
Browse

Data from Zoledronic Acid Reverses the Epithelial–Mesenchymal Transition and Inhibits Self-Renewal of Breast Cancer Cells through Inactivation of NF-κB

Posted on 2023-04-03 - 14:11
Abstract

Zoledronic acid, a third-generation bisphosphonate, has been shown to reduce cell migration, invasion, and metastasis. However, the effects of zoledronic acid on the epithelial–mesenchymal transition (EMT), a cellular process essential to the metastatic cascade, remain unclear. Therefore, the effects of zoledronic acid on EMT, using triple-negative breast cancer (TNBC) cells as a model system, were examined in more detail. Zoledronic acid treatment decreased the expression of mesenchymal markers, N-cadherin, Twist, and Snail, and subsequently upregulated expression of E-cadherin. Zoledronic acid also inhibited cell viability, induced cell-cycle arrest, and decreased the proliferative capacity of TNBC, suggesting that zoledronic acid inhibits viability through reduction of cell proliferation. As EMT has been linked to acquisition of a self-renewal phenotype, the effects of zoledronic acid on self-renewal in TNBC were also studied. Treatment with zoledronic acid decreased expression of self-renewal proteins, BMI-1 and Oct-4, and both prevented and eliminated mammosphere formation. To understand the mechanism of these results, the effect of zoledronic acid on established EMT regulator NF-κB was investigated. Zoledronic acid inhibited phosphorylation of RelA, the active subunit of NF-κB, at serine 536 and modulated RelA subcellular localization. Treatment with zoledronic acid reduced RelA binding to the Twist promoter, providing a direct link between inactivation of NF-κB signaling and loss of EMT transcription factor gene expression. Binding of Twist to the BMI-1 promoter was also decreased, correlating modulation of EMT to decreased self-renewal. On the basis of these results, it is proposed that through inactivation of NF-κB, zoledronic acid reverses EMT, which leads to a decrease in self-renewal. Mol Cancer Ther; 12(7); 1356–66. ©2013 AACR.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Molecular Cancer Therapeutics

AUTHORS (4)

Amanda J. Schech
Armina A. Kazi
Rabia A. Gilani
Angela H. Brodie

CATEGORIES

need help?