American Association for Cancer Research
Browse

Data from Radiation Drives the Evolution of Orthotopic Xenografts Initiated from Glioblastoma Stem–like Cells

Posted on 2023-03-31 - 02:46
Abstract

A consequence of the intratumor heterogeneity (ITH) of glioblastoma (GBM) is the susceptibility to treatment-driven evolution. To determine the potential of radiotherapy to influence GBM evolution, we used orthotopic xenografts initiated from CD133+ GBM stem–like cells (GSC). Toward this end, orthotopic xenografts grown in nude mice were exposed to a fractionated radiation protocol, which resulted in a significant increase in animal survival. Brain tumors from control and irradiated mice were then collected at morbidity and compared in terms of growth pattern, clonal diversity, and genomic architecture. In mice that received fractionated radiation, tumors were less invasive, with more clearly demarcated borders and tumor core hypercellularity as compared with controls, suggesting a fundamental change in tumor biology. Viral integration site analysis indicated a reduction in clonal diversity in the irradiated tumors, implying a decrease in ITH. Changes in clonal diversity were not detected after irradiation of GSCs in vitro, suggesting that the radiation-induced reduction in ITH was dependent on the brain microenvironment. Whole-exome sequencing revealed differences in mutation patterns between control and irradiated tumors, which included modifications in the presence and clonality of driver mutations associated with GBM. Moreover, changes in the distribution of mutations as a function of subpopulation size between control and irradiated tumors were consistent with subclone expansion and contraction, that is, subpopulation evolution. Taken together, these results indicate that radiation drives the evolution of the GSC-initiated orthotopic xenografts and suggest that radiation-driven evolution may have therapeutic implications for recurrent GBM.

Significance:

Radiation drives the evolution of glioblastoma orthotopic xenografts; when translated to the clinic, this may have therapeutic implications for recurrent tumors.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

FUNDING

NCI

NIH

SHARE

email
need help?