American Association for Cancer Research
Browse
00085472can111154-sup-can_11-1154_meth_f5_t11_550k.pdf (557.32 kB)

Supplementary Methods, Figures 1-5, Tables 1-11 from Metabolomic Profiling Reveals Potential Markers and Bioprocesses Altered in Bladder Cancer Progression

Download (557.32 kB)
journal contribution
posted on 2023-03-30, 20:50 authored by Nagireddy Putluri, Ali Shojaie, Vihas T. Vasu, Shaiju K. Vareed, Srilatha Nalluri, Vasanta Putluri, Gagan Singh Thangjam, Katrin Panzitt, Christopher T. Tallman, Charles Butler, Theodore R. Sana, Steven M. Fischer, Gabriel Sica, Daniel J. Brat, Huidong Shi, Ganesh S. Palapattu, Yair Lotan, Alon Z. Weizer, Martha K. Terris, Shahrokh F. Shariat, George Michailidis, Arun Sreekumar

PDF file - 550K

History

ARTICLE ABSTRACT

Although alterations in xenobiotic metabolism are considered causal in the development of bladder cancer, the precise mechanisms involved are poorly understood. In this study, we used high-throughput mass spectrometry to measure over 2,000 compounds in 58 clinical specimens, identifying 35 metabolites which exhibited significant changes in bladder cancer. This metabolic signature distinguished both normal and benign bladder from bladder cancer. Exploratory analyses of this metabolomic signature in urine showed promise in distinguishing bladder cancer from controls and also nonmuscle from muscle-invasive bladder cancer. Subsequent enrichment-based bioprocess mapping revealed alterations in phase I/II metabolism and suggested a possible role for DNA methylation in perturbing xenobiotic metabolism in bladder cancer. In particular, we validated tumor-associated hypermethylation in the cytochrome P450 1A1 (CYP1A1) and cytochrome P450 1B1 (CYP1B1) promoters of bladder cancer tissues by bisulfite sequence analysis and methylation-specific PCR and also by in vitro treatment of T-24 bladder cancer cell line with the DNA demethylating agent 5-aza-2′-deoxycytidine. Furthermore, we showed that expression of CYP1A1 and CYP1B1 was reduced significantly in an independent cohort of bladder cancer specimens compared with matched benign adjacent tissues. In summary, our findings identified candidate diagnostic and prognostic markers and highlighted mechanisms associated with the silencing of xenobiotic metabolism. The metabolomic signature we describe offers potential as a urinary biomarker for early detection and staging of bladder cancer, highlighting the utility of evaluating metabolomic profiles of cancer to gain insights into bioprocesses perturbed during tumor development and progression. Cancer Res; 71(24); 7376–86. ©2011 AACR.

Usage metrics

    Cancer Research

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC