American Association for Cancer Research
Browse
00085472can094283-sup-sfig_4.pdf (308.25 kB)

Supplementary Figure 4 from Suppression of Integrin α3β1 in Breast Cancer Cells Reduces Cyclooxygenase-2 Gene Expression and Inhibits Tumorigenesis, Invasion, and Cross-Talk to Endothelial Cells

Download (308.25 kB)
journal contribution
posted on 2023-03-30, 19:22 authored by Kara Mitchell, Kimberly B. Svenson, Whitney M. Longmate, Katerina Gkirtzimanaki, Rafal Sadej, Xianhui Wang, Jihe Zhao, Aristides G. Eliopoulos, Fedor Berditchevski, C. Michael DiPersio
Supplementary Figure 4 from Suppression of Integrin α3β1 in Breast Cancer Cells Reduces Cyclooxygenase-2 Gene Expression and Inhibits Tumorigenesis, Invasion, and Cross-Talk to Endothelial Cells

History

ARTICLE ABSTRACT

Integrin receptors for cell adhesion to extracellular matrix have important roles in promoting tumor growth and progression. Integrin α3β1 is highly expressed in breast cancer cells in which it is thought to promote invasion and metastasis; however, its roles in regulating malignant tumor cell behavior remain unclear. In the current study, we used short-hairpin RNA (shRNA) to show that suppression of α3β1 in a human breast cancer cell line, MDA-MB-231, leads to decreased tumorigenicity, reduced invasiveness, and decreased production of factors that stimulate endothelial cell migration. Real-time PCR revealed that suppression of α3β1 caused a dramatic reduction in expression of the cyclooxygenase-2 (COX-2) gene, which is frequently overexpressed in breast cancers and has been exploited as a therapeutic target. Decreased COX-2 was accompanied by reduced prostaglandin E2 (PGE2), a major prostanoid produced downstream of COX-2 and an important effector of COX-2 signaling. shRNA-mediated suppression of COX-2 showed that it has a role in tumor cell invasion and cross-talk to endothelial cells. Furthermore, treatment with PGE2 restored these functions in α3β1-deficient MDA-MB-231 cells. These findings identify a role for α3β1 in regulating two properties of tumor cells that facilitate cancer progression: invasiveness and ability to stimulate endothelial cells. They also reveal a novel role for COX-2 as a downstream effector of α3β1 in tumor cells, thereby identifying α3β1 as a potential therapeutic target to inhibit breast cancer. Cancer Res; 70(15); 6359–67. ©2010 AACR.

Usage metrics

    Cancer Research

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC