American Association for Cancer Research
Browse
00085472can050742-sup-supplementary_figure_1.pdf (142.4 kB)

Supplementary Figure 1 from Contributions by MutL Homologues Mlh3 and Pms2 to DNA Mismatch Repair and Tumor Suppression in the Mouse

Download (142.4 kB)
journal contribution
posted on 2023-03-30, 16:41 authored by Peng-Chieh Chen, Sandra Dudley, Wayne Hagen, Diana Dizon, Leslie Paxton, Denise Reichow, Song-Ro Yoon, Kan Yang, Norman Arnheim, R. Michael Liskay, Steven M. Lipkin
Supplementary Figure 1 from Contributions by MutL Homologues Mlh3 and Pms2 to DNA Mismatch Repair and Tumor Suppression in the Mouse

History

ARTICLE ABSTRACT

Germ line DNA mismatch repair mutations in MLH1 and MSH2 underlie the vast majority of hereditary non-polyposis colon cancer. Four mammalian homologues of Escherichia coli MutL heterodimerize to form three distinct complexes: MLH1/PMS2, MLH1/MLH3, and MLH1/PMS1. Although MLH1/PMS2 is generally thought to have the major MutL activity, the precise contributions of each MutL heterodimer to mismatch repair functions are poorly understood. Here, we show that Mlh3 contributes to mechanisms of tumor suppression in the mouse. Mlh3 deficiency alone causes microsatellite instability, impaired DNA-damage response, and increased gastrointestinal tumor susceptibility. Furthermore, Mlh3;Pms2 double-deficient mice have tumor susceptibility, shorter life span, microsatellite instability, and DNA-damage response phenotypes that are indistinguishable from Mlh1-deficient mice. Our data support previous results from budding yeast that show partial functional redundancy between MLH3 and PMS2 orthologues for mutation avoidance and show a role for Mlh3 in gastrointestinal and extragastrointestinal tumor suppression. The data also suggest a mechanistic basis for the more severe mismatch repair–related phenotypes and cancer susceptibility in Mlh1- versus Mlh3- or Pms2-deficient mice. Contributions by both MLH1/MLH3 and MLH1/PMS2 complexes to mechanisms of mismatch repair–mediated tumor suppression, therefore, provide an explanation why, among MutL homologues, only germ line mutations in MLH1 are common in hereditary non-polyposis colon cancer.

Usage metrics

    Cancer Research

    Categories

    Keywords

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC