Abstract

We introduce the notions of the ๐’ฒ function and ๐’ฎ function, and then we prove two common fixed point theorems in complete generalized metric spaces under contractive conditions with these two functions. Our results generalize or improve many recent common fixed point results in the literature.

1. Introduction and Preliminaries

In 2000, Branciari [1] introduced the following notion of a generalized metric space where the triangle inequality of a metric space had been replaced by an inequality involving three terms instead of two. Later, many authors worked on this interesting space (e.g., [2โ€“7]).

Let (๐‘‹,๐‘‘) be a generalized metric space. For ๐›พ>0 and ๐‘ฅโˆˆ๐‘‹, we define that ๐ต๐›พ(๐‘ฅ)โˆถ={๐‘ฆโˆˆ๐‘‹โˆฃ๐‘‘(๐‘ฅ,๐‘ฆ)<๐›พ}.(1.1) Branciari [1] also claimed that {๐ต๐›พ(๐‘ฅ)โˆถ๐›พ>0,๐‘ฅโˆˆ๐‘‹} is a basis for a topology on ๐‘‹, ๐‘‘ is continuous in each of the coordinates, and a generalized metric space is a Hausdorff space. We recall some definitions of a generalized metric space as follows.

Definition 1.1 (See [1]). Let ๐‘‹ be a nonempty set and ๐‘‘โˆถ๐‘‹ร—๐‘‹โ†’[0,โˆž) be a mapping such that for all ๐‘ฅ,๐‘ฆโˆˆ๐‘‹ and for all distinct point ๐‘ข,๐‘ฃโˆˆ๐‘‹ each of them different from ๐‘ฅ and ๐‘ฆ, one has the following:(i)๐‘‘(๐‘ฅ,๐‘ฆ)=0if and only if ๐‘ฅ=๐‘ฆ,(ii)๐‘‘(๐‘ฅ,๐‘ฆ)=๐‘‘(๐‘ฆ,๐‘ฅ),(iii)๐‘‘(๐‘ฅ,๐‘ฆ)โ‰ค๐‘‘(๐‘ฅ,๐‘ข)+๐‘‘(๐‘ข,๐‘ฃ)+๐‘‘(๐‘ฃ,๐‘ฆ)(rectangular inequality). Then (๐‘‹,๐‘‘) is called a generalized metric space (or shortly g.m.s).

We present an example to show that not every generalized metric on a set ๐‘‹ is a metric on ๐‘‹.

Example 1.2. Let ๐‘‹={๐‘ก,2๐‘ก,3๐‘ก,4๐‘ก,5๐‘ก} with ๐‘ก>0 be a constant, and we define ๐‘‘โˆถ๐‘‹ร—๐‘‹โ†’[0,โˆž) by(1)๐‘‘(๐‘ฅ,๐‘ฅ)=0, for all ๐‘ฅโˆˆ๐‘‹,(2)๐‘‘(๐‘ฅ,๐‘ฆ)=๐‘‘(๐‘ฆ,๐‘ฅ),for all ๐‘ฅ,๐‘ฆโˆˆ๐‘‹, (3)๐‘‘(๐‘ก,2๐‘ก)=3๐›พ,(4)๐‘‘(๐‘ก,3๐‘ก)=๐‘‘(2๐‘ก,3๐‘ก)=๐›พ,(5)๐‘‘(๐‘ก,4๐‘ก)=๐‘‘(2๐‘ก,4๐‘ก)=๐‘‘(3๐‘ก,4๐‘ก)=2๐›พ,(6)๐‘‘(๐‘ก,5๐‘ก)=๐‘‘(2๐‘ก,5๐‘ก)=๐‘‘(3๐‘ก,5๐‘ก)=๐‘‘(4๐‘ก,5๐‘ก)=(3/2)๐›พ,where ๐›พ>0 is a constant. Then let (๐‘‹,๐‘‘) be a generalized metric space, but it is not a metric space, because ๐‘‘(๐‘ก,2๐‘ก)=3๐›พ>๐‘‘(๐‘ก,3๐‘ก)+๐‘‘(3๐‘ก,2๐‘ก)=2๐›พ.(1.2)

Definition 1.3 (See [1]). Let (๐‘‹,๐‘‘) be a g.m.s, {๐‘ฅ๐‘›} be a sequence in ๐‘‹ and ๐‘ฅโˆˆ๐‘‹. We say that {๐‘ฅ๐‘›} is g.m.s convergent to ๐‘ฅ if and only if ๐‘‘(๐‘ฅ๐‘›,๐‘ฅ)โ†’0 as ๐‘›โ†’โˆž. We denote by ๐‘ฅ๐‘›โ†’๐‘ฅ as ๐‘›โ†’โˆž.

Definition 1.4 (See [1]). Let (๐‘‹,๐‘‘) be a g.m.s, {๐‘ฅ๐‘›} be a sequence in ๐‘‹ and ๐‘ฅโˆˆ๐‘‹. We say that {๐‘ฅ๐‘›} is g.m.s Cauchy sequence if and only if, for each ๐œ€>0, there exists ๐‘›0โˆˆโ„• such that ๐‘‘(๐‘ฅ๐‘š,๐‘ฅ๐‘›)<๐œ€ for all ๐‘›>๐‘š>๐‘›0.

Definition 1.5 (See [1]). Let (๐‘‹,๐‘‘) be a g.m.s. Then ๐‘‹ is called complete g.m.s if every g.m.s Cauchy sequence is g.m.s convergent in ๐‘‹.

In this paper, we also recall the concept of compatible mappings and prove two common fixed point theorems which incorporated the compatible map concept followed. In 1986, Jungck [8] introduced the below concept of compatible mappings.

Definition 1.6 (See [8]). Let (๐‘‹,๐‘‘) be a g.m.s, and let ๐‘†,F:Xโ†’๐‘‹ be two single-valued functions. We say that ๐‘† and ๐น are compatible if lim๐‘›โ†’โˆž๐‘‘๎€ท๐‘†๐น๐‘ฅ๐‘›,๐น๐‘†๐‘ฅ๐‘›๎€ธ=0,(1.3) whenever {๐‘ฅ๐‘›} is a sequence in ๐‘‹ such that lim๐‘›โ†’โˆž๐‘‘(๐น๐‘ฅ๐‘›,๐‘†๐‘ฅ๐‘›)=0.
In particular, ๐‘‘(๐‘†๐น๐‘ฅ,๐น๐‘†๐‘ฅ)=0 if ๐‘‘(๐น๐‘ฅ,๐‘†๐‘ฅ)=0 by taking ๐‘ฅ๐‘›=๐‘ฅ for all ๐‘›โˆˆโ„•.

Later, many authors studied this subject (compatible mappings), and many results on fixed points and common fixed points are proved (see, e.g., [9โ€“14]).

2. Main Results

In this paper, we first introduce the below concept of the ๐’ฒ function.

Definition 2.1. We call ๐œ‘โˆถโ„+โ†’โ„+ a ๐’ฒ function if the function ๐œ‘ satisfies the following conditions:(๐œ‘1)๐œ‘(๐‘ก)<๐‘กforall๐‘ก>0and๐œ‘(0)=0, (๐œ‘2)lim๐‘ก๐‘›โ†’๐‘กinf๐œ‘(๐‘ก๐‘›)<๐‘กforall๐‘ก>0.

Lemma 2.2. Let ๐œ‘โˆถโ„+โ†’โ„+ be a ๐’ฒ function. Then lim๐‘›โ†’โˆž๐œ‘๐‘›(๐‘ก)=0 for all ๐‘ก>0, where ๐œ‘๐‘›(๐‘ก) denotes the ๐‘›th iteration of ๐œ‘.

Proof. Let ๐‘ก>0 be fixed. If ๐œ‘๐‘›0(๐‘ก)=0 for some ๐‘›0โˆˆโ„•, then ๐œ‘๐‘›0+1(๐‘ก)=๐œ‘(๐œ‘๐‘›0(๐‘ก))=๐œ‘(0)=0.(2.1) It follows that ๐œ‘๐‘›0+๐‘˜(๐‘ก)=0 for all ๐‘˜โˆˆโ„•, and so we get that lim๐‘›โ†’โˆž๐œ‘๐‘›(๐‘ก)=0.
If ๐œ‘๐‘›(๐‘ก)>0 for all ๐‘›โˆˆโ„•, then we put ๐›ผ๐‘›=๐œ‘๐‘›(๐‘ก). Thus, ๐›ผ๐‘›+1=๐œ‘๐‘›+1(๐‘ก)=๐œ‘(๐œ‘๐‘›๎€ท๐›ผ(๐‘ก))=๐œ‘๐‘›๎€ธ.(2.2) Since ๐œ‘ is a ๐’ฒ function, we have that ๐›ผ๐‘›+1=๐œ‘(๐›ผ๐‘›)<๐›ผ๐‘›. Therefore, the sequence {๐›ผ๐‘›} is strictly decreasing and bounded from below, and so there exists an ๐›พโ‰ฅ0 such that lim๐‘›โ†’โˆž๐›ผ๐‘›=๐›พ+. We claim that ๐›พ=0. If not, suppose that ๐›พ>0, then we have that ๐›พ=lim๐‘›โ†’โˆž๐›ผ๐‘›+1=lim๐‘›โ†’โˆž๎€ท๐›ผinf๐œ‘๐‘›๎€ธ=lim๐›ผ๐‘›โ†’๐›พ+๎€ท๐›ผinf๐œ‘๐‘›๎€ธ<๐›ผ,(2.3) a contradiction. So we obtain that ๐›พ=0, that is, lim๐‘›โ†’โˆž๐œ‘๐‘›(๐‘ก)=0.

We now state the main common fixed-point theorem for the ๐’ฒ function in a complete g.m.s, as follows.

Theorem 2.3. Let (๐‘‹,๐‘‘) be a Hausdorff and complete ๐‘”.๐‘š.๐‘ , and let ๐œ‘โˆถโ„+โ†’โ„+ be a ๐’ฒ function. Let ๐‘†,๐‘‡,๐น,๐บโˆถ๐‘‹โ†’๐‘‹ be four single-valued functions such that for all ๐‘ฅ,๐‘ฆโˆˆ๐‘‹, ๐‘‘(๐‘†๐‘ฅ,๐‘‡๐‘ฆ)โ‰ค๐œ‘(max{๐‘‘(๐น๐‘ฅ,๐บ๐‘ฆ),๐‘‘(๐น๐‘ฅ,๐‘†๐‘ฅ),๐‘‘(๐บ๐‘ฆ,๐‘‡๐‘ฆ)}).(2.4) Assume that ๐‘‡(๐‘‹)โŠ‚๐น(๐‘‹) and ๐‘†(๐‘‹)โŠ‚๐บ(๐‘‹), and the pairs {๐‘†,๐น} and {๐‘‡,๐บ} are compatible. If ๐น or ๐บ is continuous, then ๐‘†,๐‘‡,๐น, and ๐บ have a unique common fixed point in ๐‘‹.

Proof. Given that ๐‘ฅ0โˆˆ๐‘‹. Define the sequence {๐‘ฅ๐‘›} recursively as follows: ๐บ๐‘ฅ2๐‘›+1=๐‘†๐‘ฅ2๐‘›=๐‘ง2๐‘›,๐น๐‘ฅ2๐‘›+2=๐‘‡๐‘ฅ2๐‘›+1=๐‘ง2๐‘›+1.(2.5)
Step 1. We will prove that lim๐‘›โ†’โˆž๐‘‘๎€ท๐‘ง๐‘›,๐‘ง๐‘›+1๎€ธ=0.(2.6) Using (2.4), we have that for each ๐‘›โˆˆโ„•๐‘‘๎€ท๐‘ง2๐‘›,๐‘ง2๐‘›+1๎€ธ๎€ท=๐‘‘๐‘†๐‘ฅ2๐‘›,๐‘‡๐‘ฅ2๐‘›+1๎€ธ๎€ท๎€ฝ๐‘‘๎€ทโ‰ค๐œ‘max๐น๐‘ฅ2๐‘›,๐บ๐‘ฅ2๐‘›+1๎€ธ๎€ท,๐‘‘๐น๐‘ฅ2๐‘›,๐‘†๐‘ฅ2๐‘›๎€ธ๎€ท,๐‘‘๐บ๐‘ฅ2๐‘›+1,๐‘‡๐‘ฅ2๐‘›+1๎€ท๎€ฝ๐‘‘๎€ท๐‘ง๎€ธ๎€พ๎€ธโ‰ค๐œ‘max2๐‘›โˆ’1,๐‘ง2๐‘›๎€ธ๎€ท๐‘ง,๐‘‘2๐‘›โˆ’1,๐‘ง2๐‘›๎€ธ๎€ท๐‘ง,๐‘‘2๐‘›,๐‘ง2๐‘›+1,๎€ธ๎€พ๎€ธ(2.7) and so we can conclude that ๐‘‘๎€ท๐‘ง2๐‘›,๐‘ง2๐‘›+1๎€ธ๎€ท๐‘‘๎€ท๐‘งโ‰ค๐œ‘2๐‘›โˆ’1,๐‘ง2๐‘›๎€ธ๎€ธ.(2.8) Similarly, we also conclude that ๐‘‘๎€ท๐‘ง2๐‘›+1,๐‘ง2๐‘›+2๎€ธ๎€ท๐‘‘๎€ท๐‘งโ‰ค๐œ‘2๐‘›,๐‘ง2๐‘›+1๎€ธ๎€ธ.(2.9) Generally, we have that for each ๐‘›โˆˆโ„•๐‘‘๎€ท๐‘ง๐‘›,๐‘ง๐‘›+1๎€ธ๎€ท๐‘‘๎€ท๐‘งโ‰ค๐œ‘๐‘›โˆ’1,๐‘ง๐‘›๎€ธ๎€ธ.(2.10) By induction, we get that ๐‘‘๎€ท๐‘ง๐‘›,๐‘ง๐‘›+1๎€ธ๎€ท๐‘‘๎€ท๐‘งโ‰ค๐œ‘๐‘›โˆ’1,๐‘ง๐‘›๎€ธ๎€ธโ‰ค๐œ‘2๎€ท๐‘‘๎€ท๐‘ง๐‘›โˆ’2,๐‘ง๐‘›โˆ’1๎€ธ๎€ธโ‰คโ‹ฏโ‰ค๐œ‘๐‘›๎€ท๐‘‘๎€ท๐‘ง0,๐‘ง1.๎€ธ๎€ธ(2.11) By Lemma 2.2, we obtained that lim๐‘›โ†’โˆž๐‘‘(๐‘ง๐‘›,๐‘ง๐‘›+1)=0.
We claim that {๐‘ง๐‘›} is g.m.s Cauchy. We claim that the following result holds.
Step 2. Claim that, for every ๐œ€>0, there exists ๐‘›0โˆˆโ„• such that if ๐‘š,๐‘›โ‰ฅ๐‘›0, then ๐‘‘(๐‘ง๐‘š,๐‘ง๐‘›)<๐œ€.
Suppose that the above statesment is false. Then there exists ๐œ€>0 such that, for any ๐‘˜โˆˆโ„•, there are ๐‘š๐‘˜,๐‘›๐‘˜โˆˆโ„• with ๐‘š๐‘˜>๐‘›๐‘˜โ‰ฅ๐‘˜ satisfying that(a)๐‘š๐‘˜ is even and ๐‘›๐‘˜ is odd,(b)๐‘‘(๐‘ง๐‘›๐‘˜,๐‘ง๐‘š๐‘˜)โ‰ฅ๐œ€,(c)๐‘š๐‘˜ is the smallest even number such that the condition (b) holds. Taking into account (b) and (c), we have that ๎€ท๐‘ง๐œ€โ‰ค๐‘‘๐‘›๐‘˜,๐‘ง๐‘š๐‘˜๎€ธ๎€ท๐‘งโ‰ค๐‘‘๐‘›๐‘˜,๐‘ง๐‘š๐‘˜โˆ’2๎€ธ๎€ท๐‘ง+๐‘‘๐‘š๐‘˜โˆ’2,๐‘ง๐‘š๐‘˜โˆ’1๎€ธ๎€ท๐‘ง+๐‘‘๐‘š๐‘˜โˆ’1,๐‘ง๐‘š๐‘˜๎€ธ๎€ท๐‘งโ‰ค๐œ€+๐‘‘๐‘š๐‘˜โˆ’2,๐‘ง๐‘š๐‘˜โˆ’1๎€ธ๎€ท๐‘ง+๐‘‘๐‘š๐‘˜โˆ’1,๐‘ง๐‘š๐‘˜๎€ธ.(2.12) Letting ๐‘˜โ†’โˆž, we get the following: lim๐‘˜โ†’โˆž๐‘‘๎€ท๐‘ง๐‘›๐‘˜,๐‘ง๐‘š๐‘˜๎€ธ๎€ท๐‘ง=๐œ€,(2.13)๐œ€โ‰ค๐‘‘๐‘›๐‘˜โˆ’1,๐‘ง๐‘š๐‘˜โˆ’1๎€ธ๎€ท๐‘งโ‰ค๐‘‘๐‘›๐‘˜โˆ’1,๐‘ง๐‘š๐‘˜โˆ’3๎€ธ๎€ท๐‘ง+๐‘‘๐‘š๐‘˜โˆ’3,๐‘ง๐‘š๐‘˜โˆ’2๎€ธ๎€ท๐‘ง+๐‘‘๐‘š๐‘˜โˆ’2,๐‘ง๐‘š๐‘˜โˆ’1๎€ธ๎€ท๐‘งโ‰ค๐œ€+๐‘‘๐‘š๐‘˜โˆ’3,๐‘ง๐‘š๐‘˜โˆ’2๎€ธ๎€ท๐‘ง+๐‘‘๐‘š๐‘˜โˆ’2,๐‘ง๐‘š๐‘˜โˆ’1๎€ธ.(2.14) Letting ๐‘˜โ†’โˆž, we get the following: lim๐‘˜โ†’โˆž๐‘‘๎€ท๐‘ง๐‘›๐‘˜โˆ’1,๐‘ง๐‘š๐‘˜โˆ’1๎€ธ=๐œ€.(2.15) Using (2.4), (2.13), and (2.15), we have ๐‘‘๎€ท๐‘ง๐‘›๐‘˜,๐‘ง๐‘š๐‘˜๎€ธ๎€ท=๐‘‘๐‘†๐‘ฅ๐‘›๐‘˜,๐‘‡๐‘ฅ๐‘š๐‘˜๎€ธ๎€ท๎€ฝ๐‘‘๎€ทโ‰ค๐œ‘max๐น๐‘ฅ๐‘›๐‘˜,๐บ๐‘ฅ๐‘š๐‘˜๎€ธ๎€ท,๐‘‘๐น๐‘ฅ๐‘›๐‘˜,๐‘†๐‘ฅ๐‘›๐‘˜๎€ธ๎€ท,๐‘‘๐บ๐‘ฅ๐‘›๐‘˜,๐‘‡๐‘ฅ๐‘›๐‘˜๎€ท๎€ฝ๐‘‘๎€ท๐‘ง๎€ธ๎€พ๎€ธ=๐œ‘max๐‘›๐‘˜โˆ’1,๐‘ง๐‘š๐‘˜โˆ’1๎€ธ๎€ท๐‘ง,๐‘‘๐‘›๐‘˜โˆ’1,๐‘ง๐‘›๐‘˜๎€ธ๎€ท๐‘ง,๐‘‘๐‘š๐‘˜โˆ’1,๐‘ง๐‘š๐‘˜๎€ท๎€ฝ๐‘‘๎€ท๐‘ง๎€ธ๎€พ๎€ธ=๐œ‘max๐‘›๐‘˜โˆ’1,๐‘ง๐‘š๐‘˜โˆ’1๎€ธ,๐‘๐‘›๐‘˜โˆ’1,๐‘๐‘š๐‘˜โˆ’1,๎€พ๎€ธ(2.16) taking lim๐‘˜โ†’โˆžinf, we get that ๐œ€<๐œ€, a contradiction. So {๐‘ง๐‘›} is g.m.s Cauchy. Since ๐‘‹ is complete, there exists ๐‘งโˆˆ๐‘‹ such that lim๐‘›โ†’โˆž๐‘ง๐‘›=๐‘ง. So we have ๐‘‘๎€ท๐น๐‘ฅ2๐‘›๎€ธ๎€ท,๐‘งโŸถ0,๐‘‘๐บ๐‘ฅ2๐‘›+1๎€ธ๎€ท,๐‘งโŸถ0,๐‘‘๐‘†๐‘ฅ2๐‘›๎€ธ๎€ท,๐‘งโŸถ0,๐‘‘๐‘‡๐‘ฅ2๐‘›+1๎€ธ,๐‘งโŸถ0,(2.17) as ๐‘›โ†’โˆž.
Step 3. We will show that ๐‘ง is a common fixed point of ๐‘†, ๐‘‡, ๐น, and ๐บ.
Assume that ๐น is continuous. Then we have ๐‘‘๎€ท๐น2๐‘ฅ2๐‘›๎€ธ๎€ท,๐น๐‘งโŸถ0,๐‘‘๐น๐‘†๐‘ฅ2๐‘›๎€ธ,๐น๐‘งโŸถ0,(2.18) as ๐‘›โ†’โˆž. By the rectangular property, we have ๐‘‘๎€ท๐‘†๐น๐‘ฅ2๐‘›๎€ธ๎€ท,๐น๐‘งโ‰ค๐‘‘๐‘†๐น๐‘ฅ2๐‘›,๐น๐‘†๐‘ฅ2๐‘›๎€ธ๎€ท+๐‘‘๐น๐‘†๐‘ฅ2๐‘›,๐น2๐‘ฅ2๐‘›๎€ธ๎€ท๐น+๐‘‘2๐‘ฅ2๐‘›๎€ธ,๐น๐‘ง.(2.19) Since ๐‘† and ๐น are compatible and ๐‘‘(๐‘†๐‘ฅ2๐‘›,๐น๐‘ฅ2๐‘›)โ†’0 as ๐‘›โ†’โˆž, we conclude that ๐‘‘๎€ท๐‘†๐น๐‘ฅ2๐‘›,๐น๐‘†๐‘ฅ2๐‘›๎€ธโŸถ0,(2.20) as ๐‘›โ†’โˆž. Taking into account (2.18), (2.19), and (2.20), we have that ๐‘‘๎€ท๐‘†๐น๐‘ฅ2๐‘›๎€ธ,๐น๐‘งโŸถ0,(2.21) as ๐‘›โ†’โˆž. Since ๐‘‘๎€ท๐‘†๐น๐‘ฅ2๐‘›,๐‘‡๐‘ฅ2๐‘›+1๎€ธ๎€ท๎€ฝ๐‘‘๎€ท๐นโ‰ค๐œ‘max2๐‘ฅ2๐‘›,๐บ๐‘ฅ2๐‘›+1๎€ธ๎€ท๐น,๐‘‘2๐‘ฅ2๐‘›,๐‘†๐น๐‘ฅ2๐‘›๎€ธ๎€ท,๐‘‘๐บ๐‘ฅ2๐‘›+1,๐‘‡๐‘ฅ2๐‘›+1๎€ธ๎€พ๎€ธ,(2.22) for each ๐‘›โˆˆโ„•. Taking lim๐‘›โ†’โˆž and taking into account (2.17), (2.18), (2.19), (2.20), and (2.21), we get that ๐‘‘(๐น๐‘ง,๐‘ง)โ‰ค๐œ‘(max{๐‘‘(๐น๐‘ง,๐‘ง),๐‘‘(๐น๐‘ง,๐น๐‘ง),๐‘‘(๐‘ง,๐‘ง)})=๐œ‘(max{๐‘‘(๐น๐‘ง,๐‘ง),0,0})<๐‘‘(๐น๐‘ง,๐‘ง),(2.23) and this is a contradiction unless ๐‘‘(๐น๐‘ง,๐‘ง)=0, that is, ๐น๐‘ง=๐‘ง.
On the same way, we have that, for each ๐‘›โˆˆโ„•, ๐‘‘๎€ท๐‘†๐‘ง,๐‘‡๐‘ฅ2๐‘›+1๎€ธ๎€ท๎€ฝ๐‘‘๎€ทโ‰ค๐œ‘max๐น๐‘ง,๐บ๐‘ฅ2๐‘›+1๎€ธ๎€ท,๐‘‘(๐น๐‘ง,๐‘†๐‘ง),๐‘‘๐บ๐‘ฅ2๐‘›+1,๐‘‡๐‘ฅ2๐‘›+1๎€ธ๎€พ๎€ธ.(2.24) letting ๐‘›โ†’โˆž, we obtained the following: ๐‘‘(๐‘†๐‘ง,๐‘ง)โ‰ค๐œ‘(max{๐‘‘(๐‘ง,๐‘ง),๐‘‘(๐‘ง,๐‘†๐‘ง),๐‘‘(๐‘ง,๐‘ง)})=๐œ‘(max{0,๐‘‘(๐‘ง,๐‘†๐‘ง),0})<๐‘‘(๐‘†๐‘ง,๐‘ง),(2.25) and this is a contradiction unless ๐‘‘(๐‘†๐‘ง,๐‘ง)=0, that is, ๐‘†๐‘ง=๐‘ง.
Since ๐‘†(๐‘‹)โŠ‚๐บ(๐‘‹), put ๐‘ง๎…žโˆˆ๐‘‹ such that ๐บ๐‘ง๎…ž=๐‘ง=๐‘†๐‘ง. Then ๐‘‡๐บ๐‘ง๎…ž=๐‘‡๐‘ง and using (2.4), ๐‘‘๎€ท๐‘ง,๐‘‡๐‘ง๎…ž๎€ธ๎€ท=๐‘‘๐‘†๐‘ง,๐‘‡๐‘ง๎…ž๎€ธ๎€ท๎€ฝ๐‘‘๎€ทโ‰ค๐œ‘max๐น๐‘ง,๐บ๐‘ง๎…ž๎€ธ๎€ท,๐‘‘(๐น๐‘ง,๐‘†๐‘ง),๐‘‘๐บ๐‘ง๎…ž,๐‘‡๐‘ง๎…ž๎€ท๎€ฝ๐‘‘๎€ท๎€ธ๎€พ๎€ธ=๐œ‘max(๐‘ง,๐‘ง),๐‘‘(๐‘ง,๐‘ง),๐‘‘๐‘ง,๐‘‡๐‘ง๎…ž๎€ท๎€ธ๎€พ๎€ธ<๐‘‘๐‘ง,๐‘‡๐‘ง๎…ž๎€ธ,(2.26) and this is a contradiction unless ๐‘‘(๐‘ง,๐‘‡๐‘ง๎…ž)=0, that is, ๐‘‡๐‘ง๎…ž=๐‘ง and so ๐‘‘(๐‘‡๐‘ง๎…ž,๐บ๐‘ง๎…ž)=๐‘‘(๐‘ง,๐‘ง)=0.
Since ๐‘‡ and ๐บ are compatible and ๐‘‘(๐‘‡๐‘ง๎…ž,๐บ๐‘ง๎…ž)=0, we have that ๐‘‘๎€ท(๐‘‡๐‘ง,๐บ๐‘ง)=๐‘‘๐‘‡๐บ๐‘ง๎…ž,๐บ๐‘‡๐‘ง๎…ž๎€ธ=0,(2.27) which implies that ๐‘‡๐‘ง=๐บ๐‘ง. Using (2.4), we also have ๐‘‘(๐‘ง,๐‘‡๐‘ง)=๐‘‘(๐‘†๐‘ง,๐‘‡๐‘ง)ร—๐œ‘(max{๐‘‘(๐น๐‘ง,๐บ๐‘ง),๐‘‘(๐น๐‘ง,๐‘†๐‘ง),๐‘‘(๐บ๐‘ง,๐‘‡๐‘ง)})=๐œ‘(max{๐‘‘(๐‘ง,๐‘‡๐‘ง),๐‘‘(๐‘ง,๐‘ง),๐‘‘(๐‘‡๐‘ง,๐‘‡๐‘ง)})<๐‘‘(๐‘ง,๐‘‡๐‘ง),(2.28) and this is a contradiction unless ๐‘‘(๐‘ง,๐‘‡๐‘ง)=0, that is, ๐‘‡๐‘ง=๐‘ง.
From above argument, we get that ๐‘†๐‘ง=๐‘‡๐‘ง=๐‘ง=๐น๐‘ง=๐บ๐‘ง,(2.29) and so ๐‘ง is a common fixed point of ๐‘†,๐‘‡,๐น, and ๐บ.
Step 4. Finally, to prove the uniqueness of the common fixed point of ๐‘†,๐‘‡,๐น and ๐บ, let ๐‘ฆ be another common fixed point of ๐‘†,๐‘‡,๐น, and ๐บ. Then using (2.4), we have ๐‘‘(๐‘ฆ,๐‘ง)=๐‘‘(๐‘†๐‘ฆ,๐‘‡๐‘ง)ร—๐œ‘(max{๐‘‘(๐น๐‘ฆ,๐บ๐‘ง),๐‘‘(๐น๐‘ฆ,๐‘†๐‘ฆ),๐‘‘(๐บ๐‘ง,๐‘‡๐‘ง)})=๐œ‘(max{๐‘‘(๐‘ฆ,๐‘ง),๐‘‘(๐‘ฆ,๐‘ฆ),๐‘‘(๐‘ง,๐‘ง)})<๐‘‘(๐‘ฆ,๐‘ง),(2.30) and this is a contradiction unless ๐‘‘(๐‘ฆ,๐‘ง)=0, that is, ๐‘ฆ=๐‘ง. Hence ๐‘ง is the unique common fixed point of ๐‘†, ๐‘‡, ๐น, and ๐บ in ๐‘‹.

We give the following example to illustrate Theorem 2.3.

Example 2.4. Let ๐‘‹={๐‘ก,2๐‘ก,3๐‘ก,4๐‘ก,5๐‘ก} with ๐‘ก>0 is a constant, and we define ๐‘‘โˆถ๐‘‹ร—๐‘‹โ†’[0,โˆž) by(1)๐‘‘(๐‘ฅ,๐‘ฅ)=0,for all ๐‘ฅโˆˆ๐‘‹,(2)๐‘‘(๐‘ฅ,๐‘ฆ)=๐‘‘(๐‘ฆ,๐‘ฅ),for all ๐‘ฅ,๐‘ฆโˆˆ๐‘‹,(3)๐‘‘(๐‘ก,2๐‘ก)=3๐›พ,(4)๐‘‘(๐‘ก,3๐‘ก)=๐‘‘(2๐‘ก,3๐‘ก)=๐›พ,(5)๐‘‘(๐‘ก,4๐‘ก)=๐‘‘(2๐‘ก,4๐‘ก)=๐‘‘(3๐‘ก,4๐‘ก)=2๐›พ,(6)๐‘‘(๐‘ก,5๐‘ก)=๐‘‘(3๐‘ก,5๐‘ก)=๐›พ and ๐‘‘(2๐‘ก,5๐‘ก)=๐‘‘(4๐‘ก,5๐‘ก)=2๐›พ,where ๐›พ>0 is a constant.
If ๐œ‘โˆถโ„+โ†’โ„+, ๐œ‘(๐‘ก)=(4/5)๐‘ก, then ๐œ‘ is a ๐’ฒ function. We next define ๐‘†, ๐‘‡, ๐น, ๐บโˆถ๐‘‹โ†’๐‘‹ by ๎‚ป๎‚ปโŽงโŽชโŽจโŽชโŽฉ๐‘†(๐‘ฅ)=3๐‘กif๐‘ฅโ‰ 4๐‘ก,5๐‘กif๐‘ฅ=4๐‘ก,๐‘‡(๐‘ฅ)=3๐‘กif๐‘ฅโ‰ 4๐‘ก,๐‘กif๐‘ฅ=4๐‘ก,๐บ(๐‘ฅ)=๐ผ(๐‘ฅ)=theidentitymapping,๐น(๐‘ฅ)=3๐‘กif๐‘ฅ=3๐‘ก,๐‘กif๐‘ฅ=๐‘ก,2๐‘ก,5t,2๐‘กif๐‘ฅ=4๐‘ก.(2.31) Then all conditions of Theorem 2.3 are satisfied, and 3๐‘ก is a unique common fixed point of ๐‘†, ๐‘‡, ๐น, and ๐บ.

For the case ๐บ=๐น=๐ผ (the identity mapping) and ๐‘†=๐‘‡, we are easy to get the below fixed-point theorem.

Theorem 2.5. Let (๐‘‹,๐‘‘) be a Hausdorff and complete ๐‘”.๐‘š.๐‘ , and let ๐œ‘โˆถโ„+โ†’โ„+ be a ๐’ฒ function. Let ๐‘‡โˆถ๐‘‹โ†’๐‘‹ be a single-valued function such that for all ๐‘ฅ,๐‘ฆโˆˆ๐‘‹, ๐‘‘(๐‘‡๐‘ฅ,๐‘‡๐‘ฆ)โ‰ค๐œ‘(max{๐‘‘(๐‘ฅ,๐‘ฆ),๐‘‘(๐‘ฅ,๐‘‡๐‘ฅ),๐‘‘(๐‘ฆ,๐‘‡๐‘ฆ)}).(2.32) Then ๐‘‡ has a unique fixed point in ๐‘‹.

We next introduce the below concept of the ๐’ฎ function.

Definition 2.6. We call ๐œ™โˆถโ„+3โ†’โ„+ a ๐’ฎ function if the function ๐œ™ satisfies the following conditions:(๐œ™1)๐œ™ is a strictly increasing, continuous function in each coordinate,(๐œ™2) for all ๐‘ก>0,๐œ™(๐‘ก,๐‘ก,๐‘ก)<๐‘ก,๐œ™(๐‘ก,0,0)<๐‘ก,๐œ™(0,๐‘ก,0)<๐‘ก, and ๐œ™(0,0,๐‘ก)<๐‘ก.

Example 2.7. Let ๐œ™โˆถโ„+3โ†’โ„+ denote that ๐œ™๎€ท๐‘ก1,๐‘ก2,๐‘ก3๎€ธ๎€ฝ๐‘ก=๐‘˜โ‹…max1,๐‘ก2,๐‘ก3๎€พ,for๐‘˜โˆˆ(0,1).(2.33) Then ๐œ™ is a ๐’ฎ function.

We now state the main common fixed point theorem for the ๐’ฎ function in a complete g.m.s.

Theorem 2.8. Let (๐‘‹,๐‘‘) be a Hausdorff and complete ๐‘”.๐‘š.๐‘ , and let ๐œ‘โˆถโ„+3โ†’โ„+ be a ๐’ฎ function. Let ๐‘†,๐‘‡,๐น,๐บโˆถ๐‘‹โ†’๐‘‹ be four single-valued functions such that for all ๐‘ฅ,๐‘ฆโˆˆ๐‘‹, ๐‘‘(๐‘†๐‘ฅ,๐‘‡๐‘ฆ)โ‰ค๐œ™(๐‘‘(๐น๐‘ฅ,๐บ๐‘ฆ),๐‘‘(๐น๐‘ฅ,๐‘†๐‘ฅ),๐‘‘(๐บ๐‘ฆ,๐‘‡๐‘ฆ)).(2.34) Assume that ๐‘‡(๐‘‹)โŠ‚๐น(๐‘‹) and ๐‘†(๐‘‹)โŠ‚๐บ(๐‘‹), and the pairs {๐‘†,๐น} and {๐‘‡,๐บ} are compatible. If ๐น or ๐บ is continuous, then ๐‘†, ๐‘‡, ๐น, and ๐บ have a unique common fixed point in ๐‘‹.

Proof. Given ๐‘ฅ0โˆˆ๐‘‹. Define the sequence {๐‘ฅ๐‘›} recusively as follows: ๐บ๐‘ฅ2๐‘›+1=๐‘†๐‘ฅ2๐‘›=๐‘ง2๐‘›,๐น๐‘ฅ2๐‘›+2=๐‘‡๐‘ฅ2๐‘›+1=๐‘ง2๐‘›+1.(2.35)
Step 1. We will prove that lim๐‘›โ†’โˆž๐‘‘๎€ท๐‘ง๐‘›,๐‘ง๐‘›+1๎€ธ=0,(2.36) Using (2.34) and the definition of the ๐’ฎ function, we have that for each ๐‘›โˆˆโ„•๐‘‘๎€ท๐‘ง2๐‘›,๐‘ง2๐‘›+1๎€ธ๎€ท=๐‘‘๐‘†๐‘ฅ2๐‘›,๐‘‡๐‘ฅ2๐‘›+1๎€ธ๎€ท๐‘‘๎€ทโ‰ค๐œ™๐น๐‘ฅ2๐‘›,๐บ๐‘ฅ2๐‘›+1๎€ธ๎€ท,๐‘‘๐น๐‘ฅ2๐‘›,๐‘†๐‘ฅ2๐‘›๎€ธ๎€ท,๐‘‘๐บ๐‘ฅ2๐‘›+1,๐‘‡๐‘ฅ2๐‘›+1๎€ท๐‘‘๎€ท๐‘ง๎€ธ๎€ธโ‰ค๐œ™2๐‘›โˆ’1,๐‘ง2๐‘›๎€ธ๎€ท๐‘ง,๐‘‘2๐‘›โˆ’1,๐‘ง2๐‘›๎€ธ๎€ท๐‘ง,๐‘‘2๐‘›,๐‘ง2๐‘›+1,๎€ธ๎€ธ(2.37) and so we can conclude that ๐‘‘๎€ท๐‘ง2๐‘›,๐‘ง2๐‘›+1๎€ธ๎€ท๐‘‘๎€ท๐‘งโ‰ค๐œ™2๐‘›โˆ’1,๐‘ง2๐‘›๎€ธ๎€ท๐‘ง,๐‘‘2๐‘›โˆ’1,๐‘ง2๐‘›๎€ธ๎€ท๐‘ง,๐‘‘2๐‘›โˆ’1,๐‘ง2๐‘›๎€ท๐‘ง๎€ธ๎€ธ<๐‘‘2๐‘›โˆ’1,๐‘ง2๐‘›๎€ธ.(2.38) Similarly, we also conclude that ๐‘‘๎€ท๐‘ง2๐‘›+1,๐‘ง2๐‘›+2๎€ธ๎€ท๐‘‘๎€ท๐‘งโ‰ค๐œ™2๐‘›,๐‘ง2๐‘›+1๎€ธ๎€ท๐‘ง,๐‘‘2๐‘›,๐‘ง2๐‘›+1๎€ธ๎€ท๐‘ง,๐‘‘2๐‘›,๐‘ง2๐‘›+1๎€ท๐‘ง๎€ธ๎€ธ<๐‘‘2๐‘›,๐‘ง2๐‘›+1๎€ธ.(2.39) Generally, we have that for each ๐‘›โˆˆโ„•๐‘‘๎€ท๐‘ง๐‘›,๐‘ง๐‘›+1๎€ธ๎€ท๐‘‘๎€ท๐‘งโ‰ค๐œ™๐‘›โˆ’1,๐‘ง๐‘›๎€ธ๎€ท๐‘ง,๐‘‘๐‘›โˆ’1,๐‘ง๐‘›๎€ธ๎€ท๐‘ง,๐‘‘๐‘›โˆ’1,๐‘ง๐‘›๎€ท๐‘ง๎€ธ๎€ธ<๐‘‘๐‘›โˆ’1,๐‘ง๐‘›๎€ธ.(2.40) Now, for each ๐‘šโˆˆโ„•, if we denote ๐‘๐‘š=๐‘‘(๐‘ง๐‘š,๐‘ง๐‘š+1), then {๐‘๐‘š} is a strictly decreasing sequence. Thus, it must converge to some ๐‘ with ๐‘โ‰ฅ0. We claim that ๐‘=0. If not, suppose that ๐‘>0, then ๐‘โ‰ค๐‘๐‘š+1๎€ท๐‘โ‰ค๐œ™๐‘š,๐‘๐‘š,๐‘๐‘š๎€ธ.(2.41) Passing to the limit, as ๐‘šโ†’โˆž, we have that ๐‘โ‰ค๐‘<๐œ™(๐‘,๐‘,๐‘)<๐‘, which is a contradiction. So we get ๐‘=0.
We claim that {๐‘ง๐‘›} is g.m.s Cauchy. We claim that the following result holds.
Step 2. Claim that, for every ๐œ€>0, there exists ๐‘›0โˆˆโ„• such that if ๐‘š,๐‘›โ‰ฅ๐‘›0, then ๐‘‘(๐‘ง๐‘š,๐‘ง๐‘›)<๐œ€.
Suppose that the above statesment is false. Then there exists ๐œ€>0 such that, for any ๐‘˜โˆˆโ„•, there are ๐‘š๐‘˜,๐‘›๐‘˜โˆˆโ„• with ๐‘š๐‘˜>๐‘›๐‘˜โ‰ฅ๐‘˜ satisfying that(d)๐‘š๐‘˜ is even and ๐‘›๐‘˜ is odd,(e)๐‘‘(๐‘ง๐‘›๐‘˜,๐‘ง๐‘š๐‘˜)โ‰ฅ๐œ€,(f)๐‘š๐‘˜ is the smallest even number such that the condition (e) holds. Taking into account (e) and (f), we have that ๎€ท๐‘ง๐œ€โ‰ค๐‘‘๐‘›๐‘˜,๐‘ง๐‘š๐‘˜๎€ธ๎€ท๐‘งโ‰ค๐‘‘๐‘›๐‘˜,๐‘ง๐‘š๐‘˜โˆ’2๎€ธ๎€ท๐‘ง+๐‘‘๐‘š๐‘˜โˆ’2,๐‘ง๐‘š๐‘˜โˆ’1๎€ธ๎€ท๐‘ง+๐‘‘๐‘š๐‘˜โˆ’1,๐‘ง๐‘š๐‘˜๎€ธ๎€ท๐‘งโ‰ค๐œ€+๐‘‘๐‘š๐‘˜โˆ’2,๐‘ง๐‘š๐‘˜โˆ’1๎€ธ๎€ท๐‘ง+๐‘‘๐‘š๐‘˜โˆ’1,๐‘ง๐‘š๐‘˜๎€ธ.(2.42) Letting ๐‘˜โ†’โˆž, we get the following: lim๐‘˜โ†’โˆž๐‘‘๎€ท๐‘ง๐‘›๐‘˜,๐‘ง๐‘š๐‘˜๎€ธ๎€ท๐‘ง=๐œ€,(2.43)๐œ€โ‰ค๐‘‘๐‘›๐‘˜โˆ’1,๐‘ง๐‘š๐‘˜โˆ’1๎€ธ๎€ท๐‘งโ‰ค๐‘‘๐‘›๐‘˜โˆ’1,๐‘ง๐‘š๐‘˜โˆ’3๎€ธ๎€ท๐‘ง+๐‘‘๐‘š๐‘˜โˆ’3,๐‘ง๐‘š๐‘˜โˆ’2๎€ธ๎€ท๐‘ง+๐‘‘๐‘š๐‘˜โˆ’2,๐‘ง๐‘š๐‘˜โˆ’1๎€ธ๎€ท๐‘งโ‰ค๐œ€+๐‘‘๐‘š๐‘˜โˆ’3,๐‘ง๐‘š๐‘˜โˆ’2๎€ธ๎€ท๐‘ง+๐‘‘๐‘š๐‘˜โˆ’2,๐‘ง๐‘š๐‘˜โˆ’1๎€ธ.(2.44) Letting ๐‘˜โ†’โˆž, we get the following: lim๐‘˜โ†’โˆž๐‘‘๎€ท๐‘ง๐‘›๐‘˜โˆ’1,๐‘ง๐‘š๐‘˜โˆ’1๎€ธ=๐œ€.(2.45)
Using (2.34), (2.43), and (2.45), we have ๐‘‘๎€ท๐‘ง๐‘›๐‘˜,๐‘ง๐‘š๐‘˜๎€ธ๎€ท=๐‘‘๐‘†๐‘ฅ๐‘›๐‘˜,๐‘‡๐‘ฅ๐‘š๐‘˜๎€ธ๎€ท๐‘‘๎€ทโ‰ค๐œ™๐น๐‘ฅ๐‘›๐‘˜,๐บ๐‘ฅ๐‘š๐‘˜๎€ธ๎€ท,๐‘‘๐น๐‘ฅ๐‘›๐‘˜,๐‘†๐‘ฅ๐‘›๐‘˜๎€ธ๎€ท,๐‘‘๐บ๐‘ฅ๐‘›๐‘˜,๐‘‡๐‘ฅ๐‘›๐‘˜๎€ท๐‘‘๎€ท๐‘ง๎€ธ๎€ธ=๐œ™๐‘›๐‘˜โˆ’1,๐‘ง๐‘š๐‘˜โˆ’1๎€ธ๎€ท๐‘ง,๐‘‘๐‘›๐‘˜โˆ’1,๐‘ง๐‘›๐‘˜๎€ธ๎€ท๐‘ง,๐‘‘๐‘š๐‘˜โˆ’1,๐‘ง๐‘š๐‘˜๎€ท๐‘‘๎€ท๐‘ง๎€ธ๎€ธ=๐œ™๐‘›๐‘˜โˆ’1,๐‘ง๐‘š๐‘˜โˆ’1๎€ธ,๐‘๐‘›๐‘˜โˆ’1,๐‘๐‘š๐‘˜โˆ’1๎€ธ,(2.46) taking ๐‘˜โ†’โˆž, we get that ๐œ€โ‰ค๐œ™(๐œ€,0,0)<๐œ€, a contradiction. So {๐‘ง๐‘›} is g.m.s Cauchy. Since ๐‘‹ is complete, there exists ๐‘งโˆˆ๐‘‹ such that lim๐‘›โ†’โˆž๐‘ง๐‘›=๐‘ง. So we have ๐‘‘๎€ท๐น๐‘ฅ2๐‘›๎€ธ๎€ท,๐‘งโŸถ0,๐‘‘๐บ๐‘ฅ2๐‘›+1๎€ธ๎€ท,๐‘งโŸถ0,๐‘‘๐‘†๐‘ฅ2๐‘›๎€ธ๎€ท,๐‘งโŸถ0,๐‘‘๐‘‡๐‘ฅ2๐‘›+1๎€ธ,๐‘งโŸถ0,(2.47) as ๐‘›โ†’โˆž.
Step 3. We will show that ๐‘ง is a common fixed point of ๐‘†, ๐‘‡, ๐น, and ๐บ.
Assume that ๐น is continuous. Then, we have ๐‘‘๎€ท๐น2๐‘ฅ2๐‘›๎€ธ๎€ท,๐น๐‘งโŸถ0,๐‘‘๐น๐‘†๐‘ฅ2๐‘›๎€ธ,๐น๐‘งโŸถ0,(2.48) as ๐‘›โ†’โˆž. By the rectangular property, we have ๐‘‘๎€ท๐‘†๐น๐‘ฅ2๐‘›๎€ธ๎€ท,๐น๐‘งโ‰ค๐‘‘๐‘†๐น๐‘ฅ2๐‘›,๐น๐‘†๐‘ฅ2๐‘›๎€ธ๎€ท+๐‘‘๐น๐‘†๐‘ฅ2๐‘›,๐น2๐‘ฅ2๐‘›๎€ธ๎€ท๐น+๐‘‘2๐‘ฅ2๐‘›๎€ธ,๐น๐‘ง.(2.49) Since ๐‘† and ๐น are compatible and ๐‘‘(๐‘†๐‘ฅ2๐‘›,๐น๐‘ฅ2๐‘›)โ†’0 as ๐‘›โ†’โˆž, we conclude that ๐‘‘๎€ท๐‘†๐น๐‘ฅ2๐‘›,๐น๐‘†๐‘ฅ2๐‘›๎€ธโŸถ0,(2.50) as ๐‘›โ†’โˆž. Taking into account (2.48), (2.49), and (2.50), we have that ๐‘‘๎€ท๐‘†๐น๐‘ฅ2๐‘›๎€ธ,๐น๐‘งโŸถ0,(2.51) as ๐‘›โ†’โˆž. Since ๐‘‘๎€ท๐‘†๐น๐‘ฅ2๐‘›,๐‘‡๐‘ฅ2๐‘›+1๎€ธ๎€ท๐‘‘๎€ท๐นโ‰ค๐œ™2๐‘ฅ2๐‘›,๐บ๐‘ฅ2๐‘›+1๎€ธ๎€ท๐น,๐‘‘2๐‘ฅ2๐‘›,๐‘†๐น๐‘ฅ2๐‘›๎€ธ๎€ท,๐‘‘๐บ๐‘ฅ2๐‘›+1,๐‘‡๐‘ฅ2๐‘›+1๎€ธ๎€ธ,(2.52) for each ๐‘›โˆˆโ„•. Letting ๐‘›โ†’โˆž and taking into account (2.47), (2.48), (2.49), (2.50), and (2.51), we get that ๐‘‘(๐น๐‘ง,๐‘ง)โ‰ค๐œ™(๐‘‘(๐น๐‘ง,๐‘ง),๐‘‘(๐น๐‘ง,๐น๐‘ง),๐‘‘(๐‘ง,๐‘ง))=๐œ™(๐‘‘(๐น๐‘ง,๐‘ง),0,0)<๐‘‘(๐น๐‘ง,๐‘ง),(2.53) and this is a contradiction unless ๐‘‘(๐น๐‘ง,๐‘ง)=0, that is, ๐น๐‘ง=๐‘ง.
On the same way, we have that, for each ๐‘›โˆˆโ„•, ๐‘‘๎€ท๐‘†๐‘ง,๐‘‡๐‘ฅ2๐‘›+1๎€ธ๎€ท๐‘‘๎€ทโ‰ค๐œ™๐น๐‘ง,๐บ๐‘ฅ2๐‘›+1๎€ธ๎€ท,๐‘‘(๐น๐‘ง,๐‘†๐‘ง),๐‘‘๐บ๐‘ฅ2๐‘›+1,๐‘‡๐‘ฅ2๐‘›+1๎€ธ๎€ธ.(2.54) Taking lim๐‘›โ†’โˆž, we obtained that ๐‘‘(๐‘†๐‘ง,๐‘ง)โ‰ค๐œ™(๐‘‘(๐น๐‘ง,๐‘ง),๐‘‘(๐น๐‘ง,๐‘†๐‘ง),๐‘‘(๐‘ง,๐‘ง))=๐œ™(๐‘‘(0,๐‘‘(๐‘ง,๐‘†๐‘ง),0))<๐‘‘(๐‘†๐‘ง,๐‘ง),(2.55) and this is a contradiction unless ๐‘‘(๐‘†๐‘ง,๐‘ง)=0, that is, ๐‘†๐‘ง=๐‘ง.
Since ๐‘†(๐‘‹)โŠ‚๐บ(๐‘‹), put ๐‘ง๎…žโˆˆ๐‘‹ such that ๐บ๐‘ง๎…ž=๐‘ง=๐‘†๐‘ง. Then ๐‘‡๐บ๐‘ง๎…ž=๐‘‡๐‘ง and using (2.34), ๐‘‘๎€ท๐‘ง,๐‘‡๐‘ง๎…ž๎€ธ๎€ท=๐‘‘๐‘†๐‘ง,๐‘‡๐‘ง๎…ž๎€ธ๎€ท๐‘‘๎€ทโ‰ค๐œ™๐น๐‘ง,๐บ๐‘ง๎…ž๎€ธ๎€ท,๐‘‘(๐น๐‘ง,๐‘†๐‘ง),๐‘‘๐บ๐‘ง๎…ž,๐‘‡๐‘ง๎…ž๎€ท๐‘‘๎€ท๎€ธ๎€ธ=๐œ™(๐‘ง,๐‘ง),๐‘‘(๐‘ง,๐‘ง),๐‘‘๐‘ง,๐‘‡๐‘ง๎…ž๎€ท๎€ธ๎€ธ<๐‘‘๐‘ง,๐‘‡๐‘ง๎…ž๎€ธ,(2.56) and this is a contradiction unless ๐‘‘(๐‘ง,๐‘‡๐‘ง๎…ž)=0, that is, ๐‘‡๐‘ง๎…ž=๐‘ง and so ๐‘‘(๐‘‡๐‘ง๎…ž,๐บ๐‘ง๎…ž)=๐‘‘(๐‘ง,๐‘ง)=0.
Since ๐‘‡ and ๐บ are compatible and ๐‘‘(๐‘‡๐‘ง๎…ž,๐บ๐‘ง๎…ž)=0, we have that ๐‘‘๎€ท(๐‘‡๐‘ง,๐บ๐‘ง)=๐‘‘๐‘‡๐บ๐‘ง๎…ž,๐บ๐‘‡๐‘ง๎…ž๎€ธ=0,(2.57) which implies that ๐‘‡๐‘ง=๐บ๐‘ง. Using (2.34), we also have ๐‘‘(๐‘ง,๐‘‡๐‘ง)=๐‘‘(๐‘†๐‘ง,๐‘‡๐‘ง)โ‰ค๐œ™(๐‘‘(๐น๐‘ง,๐บ๐‘ง),๐‘‘(๐น๐‘ง,๐‘†๐‘ง),๐‘‘(๐บ๐‘ง,๐‘‡๐‘ง))=๐œ™(๐‘‘(๐‘ง,๐‘‡๐‘ง),๐‘‘(๐‘ง,๐‘ง),๐‘‘(๐‘‡๐‘ง,๐‘‡๐‘ง))<๐‘‘(๐‘ง,๐‘‡๐‘ง),(2.58) and this is a contradiction unless ๐‘‘(๐‘ง,๐‘‡๐‘ง)=0, that is, ๐‘‡๐‘ง=๐‘ง.
From above argument, we get that ๐‘†๐‘ง=๐‘‡๐‘ง=๐‘ง=๐น๐‘ง=๐บ๐‘ง,(2.59) and so ๐‘ง is a common fixed point of ๐‘†, ๐‘‡, ๐น, and ๐บ.
Step 4. Finally, to prove the uniqueness of the common fixed point of ๐‘†, ๐‘‡, ๐น, and ๐บ, let ๐‘ฆ be another common fixed point of ๐‘†, ๐‘‡, ๐น, and ๐บ. Then using (2.34), we have ๐‘‘(๐‘ฆ,๐‘ง)=๐‘‘(๐‘†๐‘ฆ,๐‘‡๐‘ง)โ‰ค๐œ™(๐‘‘(๐น๐‘ฆ,๐บ๐‘ง),๐‘‘(๐น๐‘ฆ,๐‘†๐‘ฆ),๐‘‘(๐บ๐‘ง,๐‘‡๐‘ง))=๐œ™(๐‘‘(๐‘ฆ,๐‘ง),๐‘‘(๐‘ฆ,๐‘ฆ),๐‘‘(๐‘ง,๐‘ง))<๐‘‘(๐‘ฆ,๐‘ง),(2.60) and this is a contradiction unless ๐‘‘(๐‘ฆ,๐‘ง)=0, that is, ๐‘ฆ=๐‘ง. Hence ๐‘ง is the unique common fixed point of ๐‘†, ๐‘‡, ๐น, and ๐บ in ๐‘‹.

Using Example 2.4, we get the following example to illustrate Theorem 2.8.

Example 2.9. Let ๐‘‹={๐‘ก,2๐‘ก,3๐‘ก,4๐‘ก,5๐‘ก} with ๐‘ก>0 be a constant, and we define ๐‘‘โˆถ๐‘‹ร—๐‘‹โ†’[0,โˆž) by(1)๐‘‘(๐‘ฅ,๐‘ฅ)=0, for all ๐‘ฅโˆˆ๐‘‹,(2)๐‘‘(๐‘ฅ,๐‘ฆ)=๐‘‘(๐‘ฆ,๐‘ฅ),for all ๐‘ฅ,๐‘ฆโˆˆ๐‘‹,(3)๐‘‘(๐‘ก,2๐‘ก)=3๐›พ,(4)๐‘‘(๐‘ก,3๐‘ก)=๐‘‘(2๐‘ก,3๐‘ก)=๐›พ,(5)๐‘‘(๐‘ก,4๐‘ก)=๐‘‘(2๐‘ก,4๐‘ก)=๐‘‘(3๐‘ก,4๐‘ก)=2๐›พ,(6)๐‘‘(๐‘ก,5๐‘ก)=๐‘‘(3๐‘ก,5๐‘ก)=๐›พand ๐‘‘(2๐‘ก,5๐‘ก)=๐‘‘(4๐‘ก,5๐‘ก)=2๐›พ,โ€ƒโ€ƒโ€‰โ€‰โ€‰where ๐›พ>0 is a constant.
If ๐œ™โˆถโ„+3โ†’โ„+,๐œ™(๐‘ก)=(8/9)โ‹…max{๐‘ก1,๐‘ก2,๐‘ก3}, then ๐œ™ is a ๐’ฎ function. We next define ๐‘†,๐‘‡,๐น,๐บโˆถ๐‘‹โ†’๐‘‹ by ๎‚ป๎‚ปโŽงโŽชโŽจโŽชโŽฉ๐‘†(๐‘ฅ)=3๐‘กif๐‘ฅโ‰ 4๐‘ก,5๐‘กif๐‘ฅ=4๐‘ก,๐‘‡(๐‘ฅ)=3๐‘กif๐‘ฅโ‰ 4๐‘ก,๐‘กif๐‘ฅ=4๐‘ก,๐บ(๐‘ฅ)=๐ผ(๐‘ฅ)=theidentitymapping,๐น(๐‘ฅ)=3๐‘กif๐‘ฅ=3๐‘ก,๐‘กif๐‘ฅ=๐‘ก,2๐‘ก,5๐‘ก,2๐‘กif๐‘ฅ=4๐‘ก.(2.61) Then all conditions of Theorem 2.8 are satisfied, and 3๐‘ก is a unique common fixed point of ๐‘†, ๐‘‡, ๐น, and ๐บ.

For the case ๐บ=๐น=๐ผ (the identity mapping) and ๐‘†=๐‘‡, we are easy to get the below fixed-point theorem.

Theorem 2.10. Let (๐‘‹,๐‘‘) be a Hausdorff and complete ๐‘”.๐‘š.๐‘ , and let ๐œ™โˆถโ„+3โ†’โ„+ be a ๐’ฎ function. Let ๐‘‡โˆถ๐‘‹โ†’๐‘‹ be a single-valued function such that for all ๐‘ฅ,๐‘ฆโˆˆ๐‘‹, ๐‘‘(๐‘‡๐‘ฅ,๐‘‡๐‘ฆ)โ‰ค๐œ™(๐‘‘(๐‘ฅ,๐‘ฆ),๐‘‘(๐‘ฅ,๐‘‡๐‘ฅ),๐‘‘(๐‘ฆ,๐‘‡๐‘ฆ)).(2.62) Then ๐‘‡ has a unique fixed point in ๐‘‹.

Acknowledgments

The authors would like to thank referee(s) for many useful comments and suggestions for the improvement of the paper. This research was supported by the National Science Council of the Republic of China.