Abstract

By using the stronger Meir-Keeler mapping, we introduce the concepts of the sMK-G-cyclic mappings, sMK-K-cyclic mappings, and sMK-C-cyclic mappings, and then we prove some best proximity point theorems for these various types of contractions. Our results generalize or improve many recent best proximity point theorems in the literature (e.g., Elderd and Veeramani, 2006; Sadiq Basha et al., 2011).

1. Introduction and Preliminaries

Let 𝐴 and 𝐡 be nonempty subsets of a metric space (𝑋,𝑑). Consider a mapping π‘‡βˆΆπ΄βˆͺ𝐡→𝐴βˆͺ𝐡, 𝑇 is called a cyclic map if 𝑇(𝐴)βŠ†π΅ and 𝑇(𝐡)βŠ†π΄. π‘₯∈𝐴 is called a best proximity point of 𝑇 in 𝐴 if 𝑑(π‘₯,𝑇π‘₯)=𝑑(𝐴,𝐡) is satisfied, where 𝑑(𝐴,𝐡)=inf{𝑑(π‘₯,𝑦)∢π‘₯∈𝐴,π‘¦βˆˆπ΅}. In 2005, Eldred et al. [1] proved the existence of a best proximity point for relatively nonexpansive mappings using the notion of proximal normal structure. In 2006, Eldred and Veeramani [2] proved the following existence theorem.

Theorem 1.1 (see Theorem 3.10 in [2]). Let 𝐴 and 𝐡 be nonempty closed convex subsets of a uniformly convex Banach space. Suppose π‘“βˆΆπ΄βˆͺ𝐡→𝐴βˆͺ𝐡 is a cyclic contraction, that is, 𝑓(𝐴)βŠ†π΅ and 𝑓(𝐡)βŠ†π΄, and there exists π‘˜βˆˆ(0,1) such that 𝑑(𝑓π‘₯,𝑓𝑦)β‰€π‘˜π‘‘(π‘₯,𝑦)+(1βˆ’π‘˜)𝑑(𝐴,𝐡)foreveryπ‘₯∈𝐴,π‘¦βˆˆπ΅.(1.1) Then there exists a unique best proximity point in 𝐴. Further, for each π‘₯∈𝐴, {𝑓2𝑛π‘₯} converges to the best proximity point.

Later, best proximity point theorems for various types of contractions have been obtained in [3–7]. Particularly, in [8], the authors prove some best proximity point theorems for 𝐾-cyclic mappings and 𝐢-cyclic mappings in the frameworks of metric spaces and uniformly convex Banach spaces, thereby furnishing an optimal approximate solution to the equations of the form 𝑇π‘₯=π‘₯, where 𝑇 is a non-self-𝐾-cyclic mapping or a non-self-𝐢-cyclic mapping.

Definition 1.2 (see [8]). A pair of mappings π‘‡βˆΆπ΄β†’π΅ and π‘†βˆΆπ΅β†’π΄ is said to form a 𝐾-cyclic mapping between 𝐴 and 𝐡 if there exists a nonnegative real number π‘˜<1/2 such that []𝑑(𝑇π‘₯,𝑆𝑦)β‰€π‘˜π‘‘(π‘₯,𝑇π‘₯)+𝑑(𝑦,𝑆𝑦)+(1βˆ’2π‘˜)𝑑(𝐴,𝐡),(1.2) for π‘₯∈𝐴 and π‘¦βˆˆπ΅.

Definition 1.3 1.3 (see [8]). A pair of mappings π‘‡βˆΆπ΄β†’π΅ and π‘†βˆΆπ΅β†’π΄ is said to form a 𝐢-cyclic mapping between 𝐴 and 𝐡 if there exists a nonnegative real number π‘˜<1/2 such that []𝑑(𝑇π‘₯,𝑆𝑦)β‰€π‘˜π‘‘(π‘₯,𝑆𝑦)+𝑑(𝑦,𝑇π‘₯)+(1βˆ’2π‘˜)𝑑(𝐴,𝐡),(1.3) for π‘₯∈𝐴 and π‘¦βˆˆπ΅.

In this paper, we also recall the notion of Meir-Keeler mapping (see [9]). A function πœ™βˆΆ[0,∞)β†’[0,∞) is said to be a Meir-Keeler mapping if, for each πœ‚>0, there exists 𝛿>0 such that, for π‘‘βˆˆ[0,∞) with πœ‚β‰€π‘‘<πœ‚+𝛿, we have πœ™(𝑑)<πœ‚. Generalization of the above function has been a heavily investigated branch of research. In this study, we introduce the below notion of the stronger Meir-Keeler function πœ“βˆΆ[0,∞)β†’[0,1/2).

Definition 1.4. We call πœ“βˆΆ[0,∞)β†’[0,1/2) a stronger Meir-Keeler mapping if the mapping πœ“ satisfies the following condition: βˆ€πœ‚>0βˆƒπ›Ώ>0βˆƒπ›Ύπœ‚βˆˆξ‚ƒ10,2[ξ€·βˆ€π‘‘βˆˆ0,∞)πœ‚β‰€π‘‘<𝛿+πœ‚βŸΉπœ“(𝑑)<π›Ύπœ‚ξ€Έ.(1.4)

The following provides two example of a stronger Meir-Keeler mapping.

Example 1.5. Let πœ“βˆΆ[0,∞)β†’[0,1/2) be defined by ⎧βŽͺ⎨βŽͺβŽ©πœ“(𝑑)=0,if𝑑≀1,π‘‘βˆ’121,if1<𝑑<2,3,if𝑑β‰₯2.(1.5) Then πœ“ is a stronger Meir-Keeler mapping which is not a Meir-Keeler function.

Example 1.6. Let πœ“βˆΆ[0,∞)β†’[0,1/2) be defined by π‘‘πœ“(𝑑)=.3𝑑+1(1.6) Then πœ“ is a stronger Meir-Keeler mapping.

In this paper, by using the stronger Meir-Keeler mapping, we introduce the concepts of the sMK-𝐺-cyclic mappings, sMK-𝐾-cyclic mappings and sMK-𝐢-cyclic mappings, and then we prove some best proximity point theorems for these various types of contractions. Our results generalize or improve many recent best proximity point theorems in the literature (e.g., [2, 8]).

2. sMK-G-Cyclic Mappings

In this section, we prove the best proximity point theorems for the sMK-𝐺-cyclic non-self mappings.

Definition 2.1. Let (𝑋,𝑑) be a metric space, and let 𝐴 and 𝐡 be nonempty subsets of 𝑋. A pair of mappings π‘‡βˆΆπ΄β†’π΅ and π‘†βˆΆπ΅β†’π΄ is said to form an sMK-𝐺-cyclic mapping between 𝐴 and 𝐡 if there is a stronger Meir-Keeler function πœ“βˆΆβ„+β†’[0,1/2) in 𝑋 such that for π‘₯∈𝐴 and π‘¦βˆˆπ΅, [],𝑑(𝑇π‘₯,𝑆𝑦)βˆ’π‘‘(𝐴,𝐡)β‰€πœ“(𝑑(π‘₯,𝑦))⋅𝐺(π‘₯,𝑦)βˆ’2𝑑(𝐴,𝐡)(2.1) where 𝐺(π‘₯,𝑦)=max{𝑑(π‘₯,𝑦),𝑑(π‘₯,𝑇π‘₯),𝑑(𝑦,𝑆𝑦),𝑑(π‘₯,𝑆𝑦),𝑑(𝑦,𝑇π‘₯)}.

Lemma 2.2. Let 𝐴 and 𝐡 be nonempty subsets of a metric space (𝑋,𝑑). Suppose that the mappings π‘‡βˆΆπ΄β†’π΅ and π‘†βˆΆπ΅β†’π΄ form an sMK-𝐺-cyclic mapping between 𝐴 and 𝐡. Then there exists a sequence {π‘₯𝑛} in 𝑋 such that limπ‘›β†’βˆžπ‘‘ξ€·π‘₯𝑛,π‘₯𝑛+1ξ€Έ=𝑑(𝐴,𝐡).(2.2)

Proof. Let π‘₯0∈𝐴 be given and let π‘₯2𝑛+1=𝑇π‘₯2𝑛 and π‘₯2𝑛+2=𝑆π‘₯2𝑛+1 for each π‘›βˆˆβ„•βˆͺ{0}. Taking into account (2.1) and the definition of the stronger Meir-Keeler function πœ“βˆΆβ„+β†’[0,1/2), we have that for each π‘›βˆˆβ„•βˆͺ{0}𝑑π‘₯2𝑛+1,π‘₯2𝑛+2ξ€Έξ€·βˆ’π‘‘(𝐴,𝐡)=𝑑𝑇π‘₯2𝑛,𝑆π‘₯2𝑛+1𝑑π‘₯βˆ’π‘‘(𝐴,𝐡)β‰€πœ“2𝑛,π‘₯2𝑛+1⋅𝐺π‘₯ξ€Έξ€Έ2𝑛,π‘₯2𝑛+1ξ€Έξ€»,βˆ’2𝑑(𝐴,𝐡)(2.3) where 𝐺π‘₯2𝑛,π‘₯2𝑛+1𝑑π‘₯=max2𝑛,π‘₯2𝑛+1ξ€Έξ€·π‘₯,𝑑2𝑛,𝑇π‘₯2𝑛π‘₯,𝑑2𝑛+1,𝑆π‘₯2𝑛+1ξ€Έξ€·π‘₯,𝑑2𝑛,𝑆π‘₯2𝑛+1ξ€Έ,𝑑π‘₯2𝑛+1,𝑇π‘₯2𝑛𝑑π‘₯ξ€Έξ€Ύ=max2𝑛,π‘₯2𝑛+1ξ€Έξ€·π‘₯,𝑑2𝑛,π‘₯2𝑛+1ξ€Έξ€·π‘₯,𝑑2𝑛+1,π‘₯2𝑛+2ξ€Έξ€·π‘₯,𝑑2𝑛,π‘₯2𝑛+2ξ€Έξ€·π‘₯,𝑑2𝑛+1,π‘₯2𝑛+1𝑑π‘₯≀max2𝑛,π‘₯2𝑛+1ξ€Έξ€·π‘₯,𝑑2𝑛,π‘₯2𝑛+1ξ€Έξ€·π‘₯,𝑑2𝑛+1,π‘₯2𝑛+2ξ€Έξ€·π‘₯,𝑑2𝑛,π‘₯2𝑛+1ξ€Έξ€·π‘₯+𝑑2𝑛+1,π‘₯2𝑛+2𝑑π‘₯,0≀2β‹…max2𝑛,π‘₯2𝑛+1ξ€Έξ€·π‘₯,𝑑2𝑛+1,π‘₯2𝑛+2.ξ€Έξ€Ύ(2.4) Taking into account (2.3) and (2.4), we have that for each π‘›βˆˆβ„•βˆͺ{0}𝑑π‘₯2𝑛+1,π‘₯2𝑛+2𝑑π‘₯βˆ’π‘‘(𝐴,𝐡)β‰€πœ“2𝑛,π‘₯2𝑛+1𝑑π‘₯ξ€Έξ€Έβ‹…2β‹…max2𝑛,π‘₯2𝑛+1ξ€Έξ€·π‘₯,𝑑2𝑛+1,π‘₯2𝑛+2𝑑π‘₯ξ€Έξ€Ύβˆ’π‘‘(𝐴,𝐡)<max2𝑛,π‘₯2𝑛+1ξ€Έξ€·π‘₯,𝑑2𝑛+1,π‘₯2𝑛+2ξ€Έξ€Ύβˆ’π‘‘(𝐴,𝐡),(2.5) and so we conclude that 𝑑π‘₯2𝑛+1,π‘₯2𝑛+2ξ€Έξ€·π‘₯βˆ’π‘‘(𝐴,𝐡)<𝑑2𝑛,π‘₯2𝑛+1ξ€Έβˆ’π‘‘(𝐴,𝐡),(2.6) and, for each π‘›βˆˆβ„•, 𝑑π‘₯2𝑛,π‘₯2𝑛+1ξ€Έξ€·βˆ’π‘‘(𝐴,𝐡)=𝑑𝑆π‘₯2π‘›βˆ’1,𝑇π‘₯2π‘›ξ€Έξ€·βˆ’π‘‘(𝐴,𝐡)=𝑑𝑇π‘₯2𝑛,𝑆π‘₯2π‘›βˆ’1𝑑π‘₯βˆ’π‘‘(𝐴,𝐡)β‰€πœ“2𝑛,π‘₯2π‘›βˆ’1⋅𝐺π‘₯ξ€Έξ€Έ2𝑛,π‘₯2π‘›βˆ’1ξ€Έξ€»,βˆ’2𝑑(𝐴,𝐡)(2.7) where 𝐺π‘₯2𝑛,π‘₯2π‘›βˆ’1𝑑π‘₯=max2𝑛,π‘₯2π‘›βˆ’1ξ€Έξ€·π‘₯,𝑑2𝑛,𝑇π‘₯2𝑛π‘₯,𝑑2π‘›βˆ’1,𝑆π‘₯2π‘›βˆ’1ξ€Έξ€·π‘₯,𝑑2𝑛,𝑆π‘₯2π‘›βˆ’1ξ€Έξ€·π‘₯,𝑑2π‘›βˆ’1,𝑇π‘₯2𝑛𝑑π‘₯≀max2𝑛,π‘₯2π‘›βˆ’1ξ€Έξ€·π‘₯,𝑑2𝑛,π‘₯2𝑛+1ξ€Έξ€·π‘₯,𝑑2π‘›βˆ’1,π‘₯2𝑛π‘₯,𝑑2𝑛,π‘₯2𝑛π‘₯,𝑑2π‘›βˆ’1,π‘₯2𝑛+1𝑑π‘₯≀max2𝑛,π‘₯2π‘›βˆ’1ξ€Έξ€·π‘₯,𝑑2𝑛,π‘₯2𝑛+1ξ€Έξ€·π‘₯,𝑑2π‘›βˆ’1,π‘₯2𝑛π‘₯,0,𝑑2π‘›βˆ’1,π‘₯2𝑛π‘₯+𝑑2𝑛,π‘₯2𝑛+1𝑑π‘₯≀2β‹…max2π‘›βˆ’1,π‘₯2𝑛π‘₯,𝑑2𝑛,π‘₯2𝑛+1.ξ€Έξ€Ύ(2.8) Taking into account (2.7) and (2.8), we have that for each π‘›βˆˆβ„•π‘‘ξ€·π‘₯2𝑛,π‘₯2𝑛+1𝑑π‘₯βˆ’π‘‘(𝐴,𝐡)β‰€πœ“2π‘›βˆ’1,π‘₯2𝑛𝑑π‘₯ξ€Έξ€Έβ‹…2β‹…max2𝑛,π‘₯2π‘›βˆ’1ξ€Έξ€·π‘₯,𝑑2𝑛,π‘₯2𝑛+1𝑑π‘₯ξ€Έξ€Ύβˆ’π‘‘(𝐴,𝐡)<max2π‘›βˆ’1,π‘₯2𝑛π‘₯,𝑑2𝑛,π‘₯2𝑛+1ξ€Έξ€Ύβˆ’π‘‘(𝐴,𝐡),(2.9) and so we conclude that 𝑑π‘₯2𝑛+1,π‘₯2𝑛+2ξ€Έξ€·π‘₯βˆ’π‘‘(𝐴,𝐡)<𝑑2𝑛,π‘₯2𝑛+1ξ€Έβˆ’π‘‘(𝐴,𝐡).(2.10) Generally, by (2.6) and (2.10), we have that for each π‘›βˆˆβ„•π‘‘ξ€·π‘₯𝑛+1,π‘₯𝑛+2ξ€Έξ€·π‘₯<𝑑𝑛,π‘₯𝑛+1ξ€Έ,𝑑π‘₯𝑛+1,π‘₯𝑛+2𝑑π‘₯βˆ’π‘‘(𝐴,𝐡)β‰€πœ“π‘›,π‘₯𝑛+1𝑑π‘₯ξ€Έξ€Έβ‹…2⋅𝑛,π‘₯𝑛+1ξ€Έξ€».βˆ’π‘‘(𝐴,𝐡)(2.11) Thus the sequence {𝑑(π‘₯𝑛,π‘₯𝑛+1)}π‘›βˆˆβ„•βˆͺ{0} is decreasing and bounded below and hence it is convergent. Let limπ‘›β†’βˆžπ‘‘(π‘₯𝑛,π‘₯𝑛+1)=πœ‚β‰₯0. Then there exists 𝑛0βˆˆβ„• and 𝛿>0 such that for all π‘›βˆˆβ„• with 𝑛β‰₯𝑛0ξ€·π‘₯πœ‚β‰€π‘‘π‘›,π‘₯𝑛+1ξ€Έ<πœ‚+𝛿.(2.12) Taking into account (2.12) and the definition of stronger Meir-Keeler function πœ“, corresponding to πœ‚ use, there exists π›Ύπœ‚βˆˆ[0,1/2) such that πœ“ξ€·π‘‘ξ€·π‘₯𝑛,π‘₯𝑛+1ξ€Έξ€Έ<π›Ύπœ‚βˆ€π‘›β‰₯𝑛0.(2.13) Thus, we can deduce that for each π‘›βˆˆβ„• with 𝑛β‰₯𝑛0+1𝑑π‘₯𝑛,π‘₯𝑛+1𝑑π‘₯βˆ’π‘‘(𝐴,𝐡)β‰€πœ“π‘›βˆ’1,π‘₯𝑛𝑑π‘₯ξ€Έξ€Έβ‹…2β‹…π‘›βˆ’1,π‘₯π‘›ξ€Έξ€»βˆ’π‘‘(𝐴,𝐡)<π›Ύπœ‚ξ€Ίπ‘‘ξ€·π‘₯β‹…2β‹…π‘›βˆ’1,π‘₯𝑛,βˆ’π‘‘(𝐴,𝐡)(2.14) and so 𝑑π‘₯𝑛,π‘₯𝑛+1ξ€Έβˆ’π‘‘(𝐴,𝐡)<π›Ύπœ‚ξ€Ίπ‘‘ξ€·π‘₯β‹…2β‹…π‘›βˆ’1,π‘₯𝑛<ξ€·βˆ’π‘‘(𝐴,𝐡)2π›Ύπœ‚ξ€Έ2⋅𝑑π‘₯π‘›βˆ’2,π‘₯π‘›βˆ’1ξ€Έξ€»<ξ€·βˆ’π‘‘(𝐴,𝐡)<β‹―2π›Ύπœ‚ξ€Έπ‘›βˆ’π‘›0⋅𝑑π‘₯𝑛0,π‘₯𝑛0+1ξ€Έξ€».βˆ’π‘‘(𝐴,𝐡)(2.15) Since π›Ύπœ‚βˆˆ[0,1/2), we get limπ‘›β†’βˆžπ‘‘ξ€·π‘₯𝑛,π‘₯𝑛+1ξ€Έβˆ’π‘‘(𝐴,𝐡)=0,(2.16) that is, limπ‘›β†’βˆžπ‘‘(π‘₯𝑛,π‘₯𝑛+1)=𝑑(𝐴,𝐡).

Lemma 2.3. Let 𝐴 and 𝐡 be nonempty closed subsets of a metric space (𝑋,𝑑). Suppose that the mappings π‘‡βˆΆπ΄β†’π΅ and π‘†βˆΆπ΅β†’π΄ form an sMK-𝐺-cyclic mapping between 𝐴 and 𝐡. For a fixed point π‘₯0∈𝐴, let π‘₯2𝑛+1=𝑇π‘₯2𝑛 and π‘₯2𝑛+2=𝑆π‘₯2𝑛+1. Then the sequence {π‘₯𝑛} is bounded.

Proof. It follows from Lemma 2.2 that {𝑑(π‘₯2π‘›βˆ’1,π‘₯2𝑛)} is convergent and hence it is bounded. Since π‘‡βˆΆπ΄β†’π΅ and π‘†βˆΆπ΅β†’π΄ form an sMK-𝐺-cyclic mapping between 𝐴 and 𝐡, there is a stronger Meir-Keeler function πœ“βˆΆβ„+β†’[0,1/2) in 𝑋 such that 𝑑π‘₯2𝑛,𝑇π‘₯0ξ€Έξ€·=𝑑𝑆π‘₯2π‘›βˆ’1,𝑇π‘₯0ξ€Έξ€·=𝑑𝑇π‘₯0,𝑆π‘₯2π‘›βˆ’1𝑑π‘₯β‰€πœ“0,π‘₯2π‘›βˆ’1⋅𝐺𝑑π‘₯ξ€Έξ€Έ0,π‘₯2π‘›βˆ’1ξ€»ξ€Έξ€Έβˆ’2𝑑(𝐴,𝐡)+𝑑(𝐴,𝐡),(2.17) where 𝐺𝑑π‘₯0,π‘₯2π‘›βˆ’1𝑑π‘₯ξ€Έξ€Έ=max0,π‘₯2π‘›βˆ’1ξ€Έξ€·π‘₯,𝑑0,𝑇π‘₯0ξ€Έξ€·π‘₯,𝑑2π‘›βˆ’1,𝑆π‘₯2π‘›βˆ’1ξ€Έξ€·π‘₯,𝑑0,𝑆π‘₯2π‘›βˆ’1ξ€Έξ€·π‘₯,𝑑2π‘›βˆ’1,𝑇π‘₯0𝑑π‘₯ξ€Έξ€Ύ=max0,π‘₯2π‘›βˆ’1ξ€Έξ€·π‘₯,𝑑0,𝑇π‘₯0ξ€Έξ€·π‘₯,𝑑2π‘›βˆ’1,π‘₯2𝑛π‘₯,𝑑0,π‘₯2𝑛π‘₯,𝑑2π‘›βˆ’1,𝑇π‘₯0𝑑π‘₯≀max0,𝑇π‘₯0ξ€Έξ€·+𝑑𝑇π‘₯0,π‘₯2𝑛π‘₯+𝑑2𝑛,π‘₯2π‘›βˆ’1ξ€Έξ€·π‘₯,𝑑0,𝑇π‘₯0ξ€Έξ€·π‘₯,𝑑2π‘›βˆ’1,π‘₯2𝑛,𝑑π‘₯0,𝑇π‘₯0ξ€Έξ€·+𝑑𝑇π‘₯0,π‘₯2𝑛π‘₯,𝑑2π‘›βˆ’1,π‘₯2𝑛π‘₯+𝑑2𝑛,𝑇π‘₯0ξ€·π‘₯ξ€Έξ€Ύ=𝑑0,𝑇π‘₯0ξ€Έξ€·+𝑑𝑇π‘₯0,π‘₯2𝑛π‘₯+𝑑2𝑛,π‘₯2π‘›βˆ’1ξ€Έ.(2.18) Taking into account (2.17) and (2.18), we get 𝑑π‘₯2𝑛,𝑇π‘₯0ξ€Έβ‰€πœ“ξ€·π‘‘ξ€·π‘₯0,π‘₯2π‘›βˆ’1𝑑π‘₯1βˆ’πœ“0,π‘₯2π‘›βˆ’1𝑑π‘₯ξ€Έξ€Έ0,𝑇π‘₯0ξ€Έξ€·π‘₯+𝑑2𝑛,π‘₯2π‘›βˆ’1+𝑑π‘₯ξ€Έξ€»1βˆ’2πœ“0,π‘₯2π‘›βˆ’1𝑑π‘₯1βˆ’πœ“0,π‘₯2π‘›βˆ’1𝑑(𝐴,𝐡)(2.19) Therefore, the sequence {π‘₯2𝑛} is bounded. Similarly, it can be shown that {π‘₯2𝑛+1} is also bounded. So we complete the proof.

Theorem 2.4. Let 𝐴 and 𝐡 be nonempty closed subsets of a metric space. Let the mappings π‘‡βˆΆπ΄β†’π΅ and π‘†βˆΆπ΅β†’π΄ form an sMK-𝐺-cyclic mapping between 𝐴 and 𝐡. For a fixed point π‘₯0∈𝐴, let π‘₯2𝑛+1=𝑇π‘₯2𝑛 and π‘₯2𝑛+2=𝑆π‘₯2𝑛+1. Suppose that the sequence {π‘₯2𝑛} has a subsequence converging to some element π‘₯ in 𝐴. Then, π‘₯ is a best proximity point of 𝑇.

Proof. Suppose that a subsequence {π‘₯2π‘›π‘˜} converges to π‘₯ in 𝐴. It follows from Lemma 2.2 that 𝑑(π‘₯2π‘›π‘˜βˆ’1,π‘₯2π‘›π‘˜) converges to 𝑑(𝐴,𝐡). Since π‘‡βˆΆπ΄β†’π΅ and π‘†βˆΆπ΅β†’π΄ form an sMK-𝐺-cyclic mapping between 𝐴 and 𝐡 and taking into account (2.13), we have that for each 2π‘›π‘˜βˆˆβ„• with 2π‘›π‘˜β‰₯𝑛0+1𝑑π‘₯2π‘›π‘˜ξ€Έξ€·,𝑇π‘₯=𝑑𝑇π‘₯,π‘₯2π‘›π‘˜ξ€Έξ€·π‘‘ξ€·β‰€πœ“π‘₯,π‘₯2π‘›π‘˜βˆ’1⋅𝐺π‘₯,π‘₯2π‘›π‘˜βˆ’1ξ€Έξ€»βˆ’2𝑑(𝐴,𝐡)+𝑑(𝐴,𝐡)<π›Ύπœ‚β‹…ξ€ΊπΊξ€·π‘₯,π‘₯2π‘›π‘˜βˆ’1ξ€Έξ€»βˆ’2𝑑(𝐴,𝐡)+𝑑(𝐴,𝐡),(2.20) where 𝐺π‘₯,π‘₯2π‘›π‘˜βˆ’1𝑑=maxπ‘₯,π‘₯2π‘›π‘˜βˆ’1ξ€Έξ€·π‘₯,𝑑(π‘₯,𝑇π‘₯),𝑑2π‘›π‘˜βˆ’1,𝑆π‘₯2π‘›π‘˜βˆ’1ξ€Έξ€·,𝑑π‘₯,𝑆π‘₯2π‘›π‘˜βˆ’1ξ€Έξ€·π‘₯,𝑑2π‘›π‘˜βˆ’1𝑑,𝑇π‘₯ξ€Έξ€Ύ=maxπ‘₯,π‘₯2π‘›π‘˜βˆ’1ξ€Έξ€·π‘₯,𝑑(π‘₯,𝑇π‘₯),𝑑2π‘›π‘˜βˆ’1,π‘₯2π‘›π‘˜ξ€Έξ€·,𝑑π‘₯,π‘₯2π‘›π‘˜ξ€Έξ€·π‘₯,𝑑2π‘›π‘˜βˆ’1𝑑,𝑇π‘₯ξ€Έξ€Ύ=maxπ‘₯,π‘₯2π‘›π‘˜ξ€Έξ€·π‘₯+𝑑2π‘›π‘˜,π‘₯2π‘›π‘˜βˆ’1ξ€Έξ€·π‘₯,𝑑(π‘₯,𝑇π‘₯),𝑑2π‘›π‘˜βˆ’1,π‘₯2π‘›π‘˜ξ€Έ,𝑑π‘₯,π‘₯2π‘›π‘˜ξ€Έξ€·π‘₯,𝑑2π‘›π‘˜ξ€Έξ€·π‘₯,𝑇π‘₯+𝑑2π‘›π‘˜βˆ’1,π‘₯2π‘›π‘˜ξ€·ξ€Έξ€Ύβ‰€π‘‘π‘₯,π‘₯2π‘›π‘˜ξ€Έξ€·π‘₯+𝑑2π‘›π‘˜,π‘₯2π‘›π‘˜βˆ’1ξ€Έξ€·π‘₯+𝑑2π‘›π‘˜ξ€Έ.,𝑇π‘₯(2.21) Following from (2.20) and (2.21), we obtain that 𝑑π‘₯2π‘›π‘˜ξ€Έ,𝑇π‘₯β‰€π›Ύπœ‚ξ€Ίπ‘‘ξ€·π‘₯,π‘₯2π‘›π‘˜ξ€Έξ€·π‘₯+𝑑2π‘›π‘˜,π‘₯2π‘›π‘˜βˆ’1ξ€Έξ€·π‘₯+𝑑2π‘›π‘˜ξ€Έξ€»,𝑇π‘₯βˆ’2𝑑(𝐴,𝐡)+𝑑(𝐴,𝐡),(2.22) that is, we have that 𝑑π‘₯(𝐴,𝐡)≀𝑑2π‘›π‘˜ξ€Έβ‰€π›Ύ,𝑇π‘₯πœ‚1βˆ’π›Ύπœ‚β‹…ξ€Ίπ‘‘ξ€·π‘₯,π‘₯2π‘›π‘˜ξ€Έξ€·π‘₯+𝑑2π‘›π‘˜,π‘₯2π‘›π‘˜βˆ’1+𝛾1βˆ’πœ‚1βˆ’π›Ύπœ‚ξ‚Ήβ‹…π‘‘(𝐴,𝐡),(2.23) letting π‘˜β†’βˆž. Then we conclude that 𝛾𝑑(𝐴,𝐡)≀𝑑(π‘₯,𝑇π‘₯)β‰€πœ‚1βˆ’π›Ύπœ‚β‹…[]+𝛾𝑑(𝐴,𝐡)+01βˆ’πœ‚1βˆ’π›Ύπœ‚ξ‚Ήβ‹…π‘‘(𝐴,𝐡).(2.24) Therefore, 𝑑(π‘₯,𝑇π‘₯)=𝑑(𝐴,𝐡), that is, π‘₯ is a best proximity point of 𝑇.

3. sMK-K-Cyclic Mappings

In this section, we prove the best proximity point theorems for the sMK-𝐾-cyclic non-self mappings.

Definition 3.1. Let (𝑋,𝑑) be a metric space, and let 𝐴 and 𝐡 be nonempty subsets of 𝑋. A pair of mappings π‘‡βˆΆπ΄β†’π΅ and π‘†βˆΆπ΅β†’π΄ is said to form an sMK-𝐾-cyclic mapping between 𝐴 and 𝐡 if there is a stronger Meir-Keeler function πœ“βˆΆβ„+β†’[0,1/2) in 𝑋 such that, for π‘₯∈𝐴 and π‘¦βˆˆπ΅, [],𝑑(𝑇π‘₯,𝑆𝑦)βˆ’π‘‘(𝐴,𝐡)β‰€πœ“(𝑑(π‘₯,𝑦))⋅𝐾(π‘₯,𝑦)βˆ’2𝑑(𝐴,𝐡)(3.1) where 𝐾(π‘₯,𝑦)=𝑑(π‘₯,𝑇π‘₯)+𝑑(𝑦,𝑆𝑦).

Lemma 3.2. Let 𝐴 and 𝐡 be nonempty subsets of a metric space (𝑋,𝑑). Suppose that the mappings π‘‡βˆΆπ΄β†’π΅ and π‘†βˆΆπ΅β†’π΄ form an sMK-𝐾-cyclic mapping between 𝐴 and 𝐡. Then there exists a sequence {π‘₯𝑛} in 𝑋 such that limπ‘›β†’βˆžπ‘‘ξ€·π‘₯𝑛,π‘₯𝑛+1ξ€Έ=𝑑(𝐴,𝐡).(3.2)

Proof. Let π‘₯0∈𝐴 be given and let π‘₯2𝑛+1=𝑇π‘₯2𝑛 and π‘₯2𝑛+2=𝑆π‘₯2𝑛+1 for each π‘›βˆˆβ„•βˆͺ{0}. Taking into account (3.1) and the definition of the stronger Meir-Keeler function πœ“βˆΆβ„+β†’[0,1/2), we have that π‘›βˆˆβ„•βˆͺ{0}𝑑π‘₯2𝑛+1,π‘₯2𝑛+2ξ€Έξ€·βˆ’π‘‘(𝐴,𝐡)=𝑑𝑇π‘₯2𝑛,𝑆π‘₯2𝑛+1𝑑π‘₯βˆ’π‘‘(𝐴,𝐡)β‰€πœ“2𝑛,π‘₯2𝑛+1⋅𝐾π‘₯ξ€Έξ€Έ2𝑛,π‘₯2𝑛+1ξ€Έξ€»,βˆ’2𝑑(𝐴,𝐡)(3.3) where 𝐾π‘₯2𝑛,π‘₯2𝑛+1ξ€Έξ€·π‘₯=𝑑2𝑛,𝑇π‘₯2𝑛π‘₯+𝑑2𝑛+1,𝑆π‘₯2𝑛+1ξ€Έξ€·π‘₯=𝑑2𝑛,π‘₯2𝑛+1ξ€Έξ€·π‘₯+𝑑2𝑛+1,π‘₯2𝑛+2ξ€Έ.(3.4) Taking into account (3.3) and (3.4), we have that 𝑑π‘₯2𝑛+1,π‘₯2𝑛+2ξ€Έξ€·π‘₯<𝑑2𝑛,π‘₯2𝑛+1ξ€Έ.(3.5) Similarly, we can conclude that 𝑑π‘₯2𝑛,π‘₯2𝑛+1ξ€Έξ€·π‘₯<𝑑2π‘›βˆ’1,π‘₯2𝑛.(3.6) Generally, by (3.5) and (3.6), we have that for each π‘›βˆˆβ„•βˆͺ{0}𝑑π‘₯𝑛+1,π‘₯𝑛+2ξ€Έξ€·π‘₯<𝑑𝑛,π‘₯𝑛+1ξ€Έ.(3.7) Thus the sequence {𝑑(π‘₯𝑛,π‘₯𝑛+1)}π‘›βˆˆβ„•βˆͺ{0} is decreasing and bounded below and hence it is convergent. Let limπ‘›β†’βˆžπ‘‘(π‘₯𝑛,π‘₯𝑛+1)βˆ’π‘‘(𝐴,𝐡)=πœ‚β‰₯0. Then there exists 𝑛0βˆˆβ„• and 𝛿>0 such that for all π‘›βˆˆβ„• with 𝑛β‰₯𝑛0ξ€·π‘₯πœ‚β‰€π‘‘π‘›,π‘₯𝑛+1ξ€Έ<πœ‚+𝛿.(3.8) Taking into account (3.8) and the definition of stronger Meir-Keeler function πœ“, corresponding to πœ‚ use, there exists π›Ύπœ‚βˆˆ[0,1/2) such that πœ“ξ€·π‘‘ξ€·π‘₯𝑛,π‘₯𝑛+1ξ€Έξ€Έ<π›Ύπœ‚βˆ€π‘›β‰₯𝑛0.(3.9) Thus, we can deduce that for each π‘›βˆˆβ„• with 𝑛β‰₯𝑛0+1𝑑π‘₯𝑛,π‘₯𝑛+1𝑑π‘₯βˆ’π‘‘(𝐴,𝐡)β‰€πœ“π‘›βˆ’1,π‘₯𝑛⋅𝐾π‘₯ξ€Έξ€Έπ‘›βˆ’1,π‘₯π‘›ξ€Έξ€»βˆ’2𝑑(𝐴,𝐡)<π›Ύπœ‚β‹…ξ€Ίπ‘‘ξ€·π‘₯π‘›βˆ’1,𝑇π‘₯π‘›βˆ’1ξ€Έξ€·π‘₯+𝑑𝑛,𝑆π‘₯π‘›ξ€Έξ€»βˆ’2𝑑(𝐴,𝐡)=π›Ύπœ‚β‹…ξ€Ίπ‘‘ξ€·π‘₯π‘›βˆ’1,π‘₯𝑛π‘₯+𝑑𝑛,π‘₯𝑛+1ξ€Έξ€»,βˆ’2𝑑(𝐴,𝐡)(3.10) that is, 𝑑π‘₯𝑛,π‘₯𝑛+1ξ€Έπ›Ύβˆ’π‘‘(𝐴,𝐡)<πœ‚1βˆ’π›Ύπœ‚β‹…ξ€Ίπ‘‘ξ€·π‘₯π‘›βˆ’1,π‘₯𝑛,βˆ’π‘‘(𝐴,𝐡)(3.11) since π›Ύπœ‚βˆˆ[0,1/2). Therefore we get that for each π‘›βˆˆβ„• with 𝑛β‰₯𝑛0+1𝑑π‘₯𝑛,π‘₯𝑛+1ξ€Έπ›Ύβˆ’π‘‘(𝐴,𝐡)<πœ‚1βˆ’π›Ύπœ‚β‹…ξ€·π‘‘ξ€·π‘₯π‘›βˆ’1,π‘₯𝑛<ξ‚΅π›Ύβˆ’π‘‘(𝐴,𝐡)πœ‚1βˆ’π›Ύπœ‚ξ‚Ά2⋅𝑑π‘₯π‘›βˆ’2,π‘₯π‘›βˆ’1ξ€Έξ€Έ<ξ‚΅π›Ύβˆ’π‘‘(𝐴,𝐡)<β‹―πœ‚1βˆ’π›Ύπœ‚ξ‚Άπ‘›βˆ’π‘›0⋅𝑑π‘₯𝑛0,π‘₯𝑛0+1ξ€Έξ€Έ.βˆ’π‘‘(𝐴,𝐡)(3.12) Since π›Ύπœ‚βˆˆ[0,1/2), we get limπ‘›β†’βˆžπ‘‘ξ€·π‘₯𝑛,π‘₯𝑛+1ξ€Έβˆ’π‘‘(𝐴,𝐡)=0,(3.13) that is, limπ‘›β†’βˆžπ‘‘(π‘₯𝑛,π‘₯𝑛+1)=𝑑(𝐴,𝐡).

Lemma 3.3. Let 𝐴 and 𝐡 be nonempty closed subsets of a metric space (𝑋,𝑑). Suppose that the mappings π‘‡βˆΆπ΄β†’π΅ and π‘†βˆΆπ΅β†’π΄ form an sMK-𝐾-cyclic mapping between 𝐴 and 𝐡. For a fixed point π‘₯0∈𝐴, let π‘₯2𝑛+1=𝑇π‘₯2𝑛 and π‘₯2𝑛+2=𝑆π‘₯2𝑛+1. Then the sequence {π‘₯𝑛} is bounded.

Proof. It follows from Lemma 3.2 that {𝑑(π‘₯2π‘›βˆ’1,π‘₯2𝑛)} is convergent and hence it is bounded. Since π‘‡βˆΆπ΄β†’π΅ and π‘†βˆΆπ΅β†’π΄ form an sMK-𝐾-cyclic mapping between 𝐴 and 𝐡, there is a stronger Meir-Keeler function πœ“βˆΆβ„+β†’[0,1/2) in 𝑋 such that, for π‘₯0∈𝐴 and π‘₯2π‘›βˆ’1∈𝐡, 𝑑π‘₯2𝑛,𝑇π‘₯0ξ€Έξ€·βˆ’π‘‘(𝐴,𝐡)=𝑑𝑆π‘₯2π‘›βˆ’1,𝑇π‘₯0ξ€Έξ€·βˆ’π‘‘(𝐴,𝐡)=𝑑𝑇π‘₯0,𝑆π‘₯2π‘›βˆ’1𝑑π‘₯βˆ’π‘‘(𝐴,𝐡)β‰€πœ“0,π‘₯2π‘›βˆ’1⋅𝐾π‘₯ξ€Έξ€Έ0,π‘₯2π‘›βˆ’1ξ€Έξ€»,βˆ’2𝑑(𝐴,𝐡)(3.14) where 𝐾(π‘₯0,π‘₯2π‘›βˆ’1)=𝑑(π‘₯0,𝑇π‘₯0)+𝑑(π‘₯2π‘›βˆ’1,𝑆π‘₯2π‘›βˆ’1). So we get that 𝑑π‘₯2𝑛,𝑇π‘₯0𝑑π‘₯β‰€πœ“0,π‘₯2π‘›βˆ’1𝑑π‘₯ξ€Έξ€Έξ€Ί0,𝑇π‘₯0ξ€Έξ€·π‘₯+𝑑2π‘›βˆ’1,π‘₯2𝑛+𝑑π‘₯ξ€Έξ€»1βˆ’2πœ“0,π‘₯2π‘›βˆ’1𝑑(𝐴,𝐡).(3.15) Therefore, the sequence {π‘₯2𝑛} is bounded. Similarly, it can be shown that {π‘₯2𝑛+1} is also bounded. So we complete the proof.

Theorem 3.4. Let 𝐴 and 𝐡 be nonempty closed subsets of a metric space. Let the mappings π‘‡βˆΆπ΄β†’π΅ and π‘†βˆΆπ΅β†’π΄ form an sMK-𝐾-cyclic mapping between 𝐴 and 𝐡. For a fixed point π‘₯0∈𝐴, let π‘₯2𝑛+1=𝑇π‘₯2𝑛 and π‘₯2𝑛+2=𝑆π‘₯2𝑛+1. Suppose that the sequence {π‘₯2𝑛} has a subsequence converging to some element π‘₯ in 𝐴. Then, π‘₯ is a best proximity point of 𝑇.

Proof. Suppose that a subsequence {π‘₯2π‘›π‘˜} converges to π‘₯ in 𝐴. It follows from Lemma 2.2 that 𝑑(π‘₯2π‘›π‘˜βˆ’1,π‘₯2π‘›π‘˜) converges to 𝑑(𝐴,𝐡). Since π‘‡βˆΆπ΄β†’π΅ and π‘†βˆΆπ΅β†’π΄ form an sMK-𝐾-cyclic mapping between 𝐴 and 𝐡 and taking into account (3.9), we have that for each 2π‘›π‘˜βˆˆβ„• with 2π‘›π‘˜β‰₯𝑛0+1𝑑π‘₯2π‘›π‘˜ξ€Έξ€·,𝑇π‘₯=𝑑𝑇π‘₯,π‘₯2π‘›π‘˜ξ€Έξ€·π‘‘ξ€·β‰€πœ“π‘₯,π‘₯2π‘›π‘˜βˆ’1⋅𝐾π‘₯,π‘₯2π‘›π‘˜βˆ’1ξ€Έξ€»βˆ’2𝑑(𝐴,𝐡)+𝑑(𝐴,𝐡)<π›Ύπœ‚β‹…ξ€ΊπΎξ€·π‘₯,π‘₯2π‘›π‘˜βˆ’1ξ€Έξ€»βˆ’2𝑑(𝐴,𝐡)+𝑑(𝐴,𝐡),(3.16) where 𝐾π‘₯,π‘₯2π‘›π‘˜βˆ’1ξ€Έξ€·π‘₯=𝑑(π‘₯,𝑇π‘₯)+𝑑2π‘›π‘˜βˆ’1,𝑆π‘₯2π‘›π‘˜βˆ’1ξ€Έξ€·π‘₯=𝑑(π‘₯,𝑇π‘₯)+𝑑2π‘›π‘˜βˆ’1,π‘₯2π‘›π‘˜ξ€Έ.(3.17) Following from (3.16) and (3.17), we obtain that for each 2π‘›π‘˜βˆˆβ„• with 2π‘›π‘˜β‰₯𝑛0+1𝑑π‘₯(𝐴,𝐡)≀𝑑2π‘›π‘˜ξ€Έ,𝑇π‘₯β‰€π›Ύπœ‚ξ€Ίπ‘‘ξ€·π‘₯(π‘₯,𝑇π‘₯)+𝑑2π‘›π‘˜,π‘₯2π‘›π‘˜βˆ’1+ξ€·ξ€Έξ€»1βˆ’2π›Ύπœ‚ξ€Έπ‘‘(𝐴,𝐡),(3.18) Letting π‘˜β†’βˆž. Then we conclude that 𝑑(π‘₯,𝑇π‘₯)=𝑑(𝐴,𝐡), that is, π‘₯ is a best proximity point of 𝑇.

4. sMK-C-Cyclic Mappings

In this section, we prove the best proximity point theorems for the sMK-𝐢-cyclic non-self mappings.

Definition 4.1. Let (𝑋,𝑑) be a metric space, and let 𝐴 and 𝐡 be nonempty subsets of 𝑋. A pair of mappings π‘‡βˆΆπ΄β†’π΅ and π‘†βˆΆπ΅β†’π΄ is said to form an sMK-𝐢-cyclic mapping between 𝐴 and 𝐡 if there is a stronger Meir-Keeler function πœ“βˆΆβ„+β†’[0,1/2) in 𝑋 such that, for π‘₯∈𝐴 and π‘¦βˆˆπ΅, [],𝑑(𝑇π‘₯,𝑆𝑦)βˆ’π‘‘(𝐴,𝐡)β‰€πœ“(𝑑(π‘₯,𝑦))⋅𝐢(π‘₯,𝑦)βˆ’2𝑑(𝐴,𝐡)(4.1) where 𝐢(π‘₯,𝑦)=𝑑(π‘₯,𝑆𝑦)+𝑑(𝑦,𝑇π‘₯).

Lemma 4.2. Let 𝐴 and 𝐡 be nonempty subsets of a metric space (𝑋,𝑑). Suppose that the mappings π‘‡βˆΆπ΄β†’π΅ and π‘†βˆΆπ΅β†’π΄ form an sMK-𝐢-cyclic mapping between 𝐴 and 𝐡. Then there exists a sequence {π‘₯𝑛} in 𝑋 such that limπ‘›β†’βˆžπ‘‘ξ€·π‘₯𝑛,π‘₯𝑛+1ξ€Έ=𝑑(𝐴,𝐡).(4.2)

Proof. Let π‘₯0∈𝐴 be given and let π‘₯2𝑛+1=𝑇π‘₯2𝑛 and π‘₯2𝑛+2=𝑆π‘₯2𝑛+1 for each π‘›βˆˆβ„•βˆͺ{0}. Taking into account (4.1) and the definition of the stronger Meir-Keeler function πœ“βˆΆβ„+β†’[0,1/2), we have that π‘›βˆˆβ„•βˆͺ{0}𝑑π‘₯2𝑛+1,π‘₯2𝑛+2ξ€Έξ€·βˆ’π‘‘(𝐴,𝐡)=𝑑𝑇π‘₯2𝑛,𝑆π‘₯2𝑛+1𝑑π‘₯βˆ’π‘‘(𝐴,𝐡)β‰€πœ“2𝑛,π‘₯2𝑛+1⋅𝐢π‘₯ξ€Έξ€Έ2𝑛,π‘₯2𝑛+1ξ€Έξ€»,βˆ’2𝑑(𝐴,𝐡)(4.3) where 𝐢π‘₯2𝑛,π‘₯2𝑛+1ξ€Έξ€·π‘₯=𝑑2𝑛,𝑆π‘₯2𝑛+1ξ€Έξ€·π‘₯+𝑑2𝑛+1,𝑇π‘₯2𝑛π‘₯=𝑑2𝑛,π‘₯2𝑛+2ξ€Έξ€·π‘₯+𝑑2𝑛+1,π‘₯2𝑛+1ξ€Έξ€·π‘₯≀𝑑2𝑛,π‘₯2𝑛+1ξ€Έξ€·π‘₯+𝑑2𝑛+1,π‘₯2𝑛+2ξ€Έ.(4.4) Taking into account (4.3) and (4.4), we conclude that 𝑑π‘₯2𝑛+1,π‘₯2𝑛+2ξ€Έξ€·π‘₯<𝑑2𝑛,π‘₯2𝑛+1ξ€Έ.(4.5) Similarly, we can conclude that 𝑑π‘₯2𝑛,π‘₯2𝑛+1ξ€Έξ€·π‘₯<𝑑2π‘›βˆ’1,π‘₯2𝑛.(4.6) Generally, by (4.5) and (4.6), we have that for each π‘›βˆˆβ„•βˆͺ{0}𝑑π‘₯𝑛+1,π‘₯𝑛+2ξ€Έξ€·π‘₯<𝑑𝑛,π‘₯𝑛+1ξ€Έ.(4.7) Thus the sequence {𝑑(π‘₯𝑛,π‘₯𝑛+1)}π‘›βˆˆβ„•βˆͺ{0} is decreasing and bounded below and hence it is convergent. Let limπ‘›β†’βˆžπ‘‘(π‘₯𝑛,π‘₯𝑛+1)=πœ‚β‰₯0. Then there exists 𝑛0βˆˆβ„• and 𝛿>0 such that for all π‘›βˆˆβ„• with 𝑛β‰₯𝑛0ξ€·π‘₯πœ‚β‰€π‘‘π‘›,π‘₯𝑛+1ξ€Έ<πœ‚+𝛿.(4.8) Taking into account (4.5) and the definition of stronger Meir-Keeler function πœ“, corresponding to πœ‚ use, there exists π›Ύπœ‚βˆˆ[0,1/2) such that πœ“ξ€·π‘‘ξ€·π‘₯𝑛,π‘₯𝑛+1ξ€Έξ€Έ<π›Ύπœ‚βˆ€π‘›β‰₯𝑛0.(4.9) Thus, we can deduce that for each π‘›βˆˆβ„• with 𝑛β‰₯𝑛0+1𝑑π‘₯𝑛,π‘₯𝑛+1𝑑π‘₯βˆ’π‘‘(𝐴,𝐡)β‰€πœ“π‘›βˆ’1,π‘₯𝑛⋅𝐢π‘₯ξ€Έξ€Έπ‘›βˆ’1,π‘₯π‘›ξ€Έξ€»βˆ’2𝑑(𝐴,𝐡)<π›Ύπœ‚β‹…ξ€Ίπ‘‘ξ€·π‘₯π‘›βˆ’1,𝑆π‘₯𝑛π‘₯+𝑑𝑛,𝑇π‘₯π‘›βˆ’1ξ€Έξ€»βˆ’2𝑑(𝐴,𝐡)=π›Ύπœ‚β‹…ξ€Ίπ‘‘ξ€·π‘₯π‘›βˆ’1,π‘₯𝑛+1ξ€Έξ€·π‘₯+𝑑𝑛,π‘₯π‘›ξ€Έξ€»βˆ’2𝑑(𝐴,𝐡)β‰€π›Ύπœ‚β‹…ξ€Ίπ‘‘ξ€·π‘₯π‘›βˆ’1,π‘₯𝑛π‘₯+𝑑𝑛,π‘₯𝑛+1ξ€Έξ€»,+0βˆ’2𝑑(𝐴,𝐡)(4.10) that is, 𝑑π‘₯𝑛,π‘₯𝑛+1ξ€Έπ›Ύβˆ’π‘‘(𝐴,𝐡)<πœ‚1βˆ’π›Ύπœ‚β‹…ξ€Ίπ‘‘ξ€·π‘₯π‘›βˆ’1,π‘₯𝑛,βˆ’π‘‘(𝐴,𝐡)(4.11) since π›Ύπœ‚βˆˆ[0,1). Therefore we get that for each π‘›βˆˆβ„• with 𝑛β‰₯𝑛0+1𝑑π‘₯𝑛,π‘₯𝑛+1ξ€Έπ›Ύβˆ’π‘‘(𝐴,𝐡)<πœ‚1βˆ’π›Ύπœ‚β‹…ξ€·π‘‘ξ€·π‘₯π‘›βˆ’1,π‘₯𝑛<ξ‚΅π›Ύβˆ’π‘‘(𝐴,𝐡)πœ‚1βˆ’π›Ύπœ‚ξ‚Ά2⋅𝑑π‘₯π‘›βˆ’2,π‘₯π‘›βˆ’1ξ€Έξ€Έ<ξ‚΅π›Ύβˆ’π‘‘(𝐴,𝐡)<β‹―πœ‚1βˆ’π›Ύπœ‚ξ‚Άπ‘›βˆ’π‘›0⋅𝑑π‘₯𝑛0,π‘₯𝑛0+1ξ€Έξ€Έ.βˆ’π‘‘(𝐴,𝐡)(4.12) Since π›Ύπœ‚βˆˆ[0,1/2), we obtain that limπ‘›β†’βˆžπ‘‘(π‘₯𝑛,π‘₯𝑛+1)=𝑑(𝐴,𝐡).

Lemma 4.3. Let 𝐴 and 𝐡 be nonempty closed subsets of a metric space (𝑋,𝑑). Suppose that the mappings π‘‡βˆΆπ΄β†’π΅ and π‘†βˆΆπ΅β†’π΄ form an sMK-𝐢-cyclic mapping between 𝐴 and 𝐡. For a fixed point π‘₯0∈𝐴, let π‘₯2𝑛+1=𝑇π‘₯2𝑛 and π‘₯2𝑛+2=𝑆π‘₯2𝑛+1. Then the sequence {π‘₯𝑛} is bounded.

Proof. It follows from Lemma 4.2 that {𝑑(π‘₯2π‘›βˆ’1,π‘₯2𝑛)} is convergent and hence it is bounded. Since π‘‡βˆΆπ΄β†’π΅ and π‘†βˆΆπ΅β†’π΄ form an sMK-𝐢-cyclic mapping between 𝐴 and 𝐡, there is a stronger Meir-Keeler function πœ“βˆΆβ„+β†’[0,1/2) in 𝑋 such that for π‘₯0∈𝐴 and π‘₯2π‘›βˆ’1∈𝐡, 𝑑π‘₯2𝑛,𝑇π‘₯0ξ€Έξ€·βˆ’π‘‘(𝐴,𝐡)=𝑑𝑆π‘₯2π‘›βˆ’1,𝑇π‘₯0ξ€Έξ€·βˆ’π‘‘(𝐴,𝐡)=𝑑𝑇π‘₯0,𝑆π‘₯2π‘›βˆ’1𝑑π‘₯βˆ’π‘‘(𝐴,𝐡)β‰€πœ“0,π‘₯2π‘›βˆ’1⋅𝐢π‘₯ξ€Έξ€Έ0,π‘₯2π‘›βˆ’1ξ€Έξ€»,βˆ’2𝑑(𝐴,𝐡)(4.13) where 𝐢π‘₯0,π‘₯2π‘›βˆ’1ξ€Έξ€·π‘₯=𝑑0,𝑆π‘₯2π‘›βˆ’1ξ€Έξ€·π‘₯+𝑑2π‘›βˆ’1,𝑇π‘₯0ξ€Έξ€·π‘₯=𝑑0,π‘₯2𝑛π‘₯+𝑑2π‘›βˆ’1,𝑇π‘₯0ξ€Έ.(4.14) So we get that 𝑑π‘₯2𝑛,𝑇π‘₯0𝑑π‘₯β‰€πœ“0,π‘₯2π‘›βˆ’1𝑑π‘₯ξ€Έξ€Έξ€Ί0,π‘₯2𝑛π‘₯+𝑑2π‘›βˆ’1,𝑇π‘₯0+𝑑π‘₯ξ€Έξ€»1βˆ’2πœ“0,π‘₯2π‘›βˆ’1𝑑π‘₯𝑑(𝐴,𝐡)β‰€πœ“0,π‘₯2π‘›βˆ’1𝑑π‘₯ξ€Έξ€Έξ€Ί2π‘›βˆ’1,π‘₯2𝑛π‘₯+2𝑑2𝑛,𝑇π‘₯0ξ€Έξ€·π‘₯+𝑑0,𝑇π‘₯0+𝑑π‘₯ξ€Έξ€»1βˆ’2πœ“0,π‘₯2π‘›βˆ’1𝑑(𝐴,𝐡).(4.15) Therefore, the sequence {π‘₯2𝑛} is bounded. Similarly, it can be shown that {π‘₯2𝑛+1} is also bounded. So we complete the proof.

Theorem 4.4. Let 𝐴 and 𝐡 be nonempty closed subsets of a metric space. Let the mappings π‘‡βˆΆπ΄β†’π΅ and π‘†βˆΆπ΅β†’π΄ form an sMK-𝐢-cyclic mapping between 𝐴 and 𝐡. For a fixed point π‘₯0∈𝐴, let π‘₯2𝑛+1=𝑇π‘₯2𝑛 and π‘₯2𝑛+2=𝑆π‘₯2𝑛+1. Suppose that the sequence {π‘₯2𝑛} has a subsequence converging to some element π‘₯ in 𝐴. Then, π‘₯ is a best proximity point of 𝑇.

Proof. Suppose that a subsequence {π‘₯2π‘›π‘˜} converges to π‘₯ in 𝐴. It follows from Lemma 2.2 that 𝑑(π‘₯2π‘›π‘˜βˆ’1,π‘₯2π‘›π‘˜) converges to 𝑑(𝐴,𝐡). Since π‘‡βˆΆπ΄β†’π΅ and π‘†βˆΆπ΅β†’π΄ form an sMK-𝐢-cyclic mapping between 𝐴 and 𝐡 and taking into account (4.9), we have that, for each 2π‘›π‘˜βˆˆβ„• with 2π‘›π‘˜β‰₯𝑛0+1, 𝑑π‘₯2π‘›π‘˜ξ€Έξ€·,𝑇π‘₯=𝑑𝑇π‘₯,π‘₯2π‘›π‘˜ξ€Έξ€·π‘‘ξ€·β‰€πœ“π‘₯,π‘₯2π‘›π‘˜βˆ’1⋅𝐢π‘₯,π‘₯2π‘›π‘˜βˆ’1ξ€Έξ€»βˆ’2𝑑(𝐴,𝐡)+𝑑(𝐴,𝐡)<π›Ύπœ‚β‹…ξ€ΊπΆξ€·π‘₯,π‘₯2π‘›π‘˜βˆ’1ξ€Έξ€»βˆ’2𝑑(𝐴,𝐡)+𝑑(𝐴,𝐡),(4.16) where 𝐢π‘₯,π‘₯2π‘›π‘˜βˆ’1ξ€Έξ€·=𝑑π‘₯,𝑆π‘₯2π‘›π‘˜βˆ’1ξ€Έξ€·π‘₯+𝑑2π‘›π‘˜βˆ’1ξ€Έξ€·,𝑇π‘₯=𝑑π‘₯,π‘₯2π‘›π‘˜ξ€Έξ€·π‘₯+𝑑2π‘›π‘˜βˆ’1ξ€Έ.,𝑇π‘₯(4.17) Following from (4.16) and (4.17), we obtain that 𝑑π‘₯2π‘›π‘˜ξ€Έ,𝑇π‘₯β‰€π›Ύπœ‚ξ€Ίπ‘‘ξ€·π‘₯,π‘₯2π‘›π‘˜ξ€Έξ€·π‘₯+𝑑2π‘›π‘˜,π‘₯2π‘›π‘˜βˆ’1ξ€Έξ€·π‘₯+𝑑2π‘›π‘˜ξ€Έξ€»,𝑇π‘₯βˆ’2𝑑(𝐴,𝐡)+𝑑(𝐴,𝐡),(4.18) that is, we have that ξ€·π‘₯𝑑(𝐴,𝐡)≀𝑑2π‘›π‘˜ξ€Έβ‰€π›Ύ,𝑇π‘₯πœ‚1βˆ’π›Ύπœ‚β‹…ξ€Ίπ‘‘ξ€·π‘₯,π‘₯2π‘›π‘˜ξ€Έξ€·π‘₯+𝑑2π‘›π‘˜,π‘₯2π‘›π‘˜βˆ’1+𝛾1βˆ’πœ‚1βˆ’π›Ύπœ‚ξ‚Ήβ‹…π‘‘(𝐴,𝐡).(4.19) Letting π‘˜β†’βˆž. Then we conclude that 𝛾𝑑(𝐴,𝐡)≀𝑑(π‘₯,𝑇π‘₯)β‰€πœ‚1βˆ’π›Ύπœ‚β‹…[]+𝛾𝑑(𝐴,𝐡)+01βˆ’πœ‚1βˆ’π›Ύπœ‚ξ‚Ήβ‹…π‘‘(𝐴,𝐡).(4.20) Therefore, 𝑑(π‘₯,𝑇π‘₯)=𝑑(𝐴,𝐡), that is, π‘₯ is a best proximity point of 𝑇.

Acknowledgment

The authors would like to thank the referee(s) for many useful comments and suggestions for the improvement of the paper.