Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-25T03:56:09.424Z Has data issue: false hasContentIssue false

X-ray diffraction data and Rietveld refinement of CuGaxIn1-xSe2 (x=0.15 and 0.50)

Published online by Cambridge University Press:  29 February 2012

E. J. Friedrich*
Affiliation:
Departamento de Física Aplicada, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
R. Fernández-Ruiz
Affiliation:
Laboratorio de TXRF/Laue-XRD, Servicio Interdepartamental de Investigación (SIdI), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
J. M. Merino
Affiliation:
Departamento de Física Aplicada, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
M. León
Affiliation:
Departamento de Física Aplicada, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
*
a)Author to whom correspondence should be addressed. Electronic mail: josue.friedrich@gmail.com

Abstract

X-ray powder diffraction data for CuGa0.15In0.85Se2 and CuGa0.50In0.50Se2 are reported. Indexing of the X-ray diffraction powder pattern and the Rietveld refinement confirmed that these compounds crystallize in the tetragonal crystal system, with space group I-42d (No. 122) and lattice parameters of a=5.7528(2) Å and c=11.5225(3) Å for CuGa0.15In0.85Se2 and a=5.6847(1) Å and c=11.2817(1) Å for CuGa0.50In0.50Se2. The CuGaxIn1−xSe2 system presents the chalcopyrite type crystal structure (CuFeS2) and corresponds to two stacked zinc-blende unit cells. The metal atoms Cu, In, and Ga are regularly ordered in the unit cell. Every Se atom is tetrahedrally bonded to two Cu and two In and Ga atoms.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avon, J. E., Yoodee, K., and Wooley, J. C., (1984). “Solid solution, lattice parameter values, and effects of electronegativity in the (Cu1-xAgx)(Ga1-yIny)(Se1-uTeu)2 alloys,” J. Appl. Phys 55, 524535.10.1063/1.333058Google Scholar
Balboul, M. R., Schock, H. W., Fayak, S. A., Abdel El-Aal, A., Werner, J. H., and Ramadan, A. A. (2008). “Correlation of structure parameters of absorber layer with efficiency of Cu(In,Ga)Se2 solar cell,” Appl. Phys. A: Mater. Sci. Process. APAMFC 92, 557563.10.1007/s00339-008-4630-zCrossRefGoogle Scholar
El Haj Moussa, G. W., Ajaka, M., El Tahchi, M., Eid, E., and Llinares, C. (2005). “Ellipsometric spectroscopy on polycrystalline CuIn1-xGaxSe2: Identification of optical transitions,” Phys. Status Solidi A PSSABA 202, 469475.10.1002/pssa.200406934CrossRefGoogle Scholar
Fernández-Ruiz, R., Cabañero, J. P., Hernández, E., and León, M. (2001). “Determination of the stoichiometry of CuxInySez by total-reflection XRF,” Analyst (Cambridge, U.K.) ANALAO 126, 17971799.10.1039/b104466bCrossRefGoogle Scholar
Fernández-Ruiz, R., Costo, R., Morales, M. P., Bomati-Miguel, O., and Veintemillas-Verdaguer, S. (2008). “Total-reflection X-ray fluorescence: An alternative tool for the analysis of magnetic ferrofluids,” Spectrochim. Acta, Part B SAASBH 63, 13871394.10.1016/j.sab.2008.10.017CrossRefGoogle Scholar
Friedrich, E. J., Trigo, J. F., Guillén, C., Merino, J. M., and León, M. (2009). “Effect of the ITO substrate on the growth of Cu(In,Ga)Se2, CuGa3Se5, CuGa5Se8 and CuIn3Se5 thin films by flash evaporation,” J. Phys. D JPAPBE 42, 085401.10.1088/0022-3727/42/8/085401CrossRefGoogle Scholar
Gržeta-Plenković, B., Popović, S., Ćelustka, B., and Šantić, B. (1980). “Crystal data for AgGaxIn1-xSe2 and CuGaxIn1-xSe2,” J. Appl. Crystallogr. JACGAR 13, 311315.10.1107/S0021889880012149CrossRefGoogle Scholar
Hahn, H., Frank, G., Klinger, W., Meyer, A. D., and Stoerger, G. (1953). “Untersuchungen über ternäre chalkogenide. V. über einige ternäre chalkogenide mit chalkopyritstruktur,” Z. Anorg. Allg. Chem. ZAACAB 271, 153170.10.1002/zaac.19532710307CrossRefGoogle Scholar
Lam, W. W. and Shih, I. (1998). “Crystal growth of CuIn1-xGaxSe2 by horizontal Bridgman method,” Sol. Energy Mater. Sol. Cells SEMCEQ 50, 111117.10.1016/S0927-0248(97)00131-1CrossRefGoogle Scholar
Repins, I., Contreras, M. A., Egaas, B., DeHart, C., Scharf, J., Perkins, C. L., To, B., and Noufi, R. (2008). “19.9% efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovoltaics PPHOED 16, 235239.10.1002/pip.822CrossRefGoogle Scholar
Rodríguez-Carvajal, J. (1993). “Recent advances in magnetic structure determination by neutron powder diffraction,” Physica B PHYBE3 192, 5569.10.1016/0921-4526(93)90108-ICrossRefGoogle Scholar
Suri, D. K., Nagpal, C., and Chadha, G. K. (1989). “X-ray study of CuGaxIn1-xSe2 solid solutions,” J. Appl. Crystallogr. JACGAR 22, 578583.10.1107/S0021889889008289CrossRefGoogle Scholar
Tinoco, T., Rincon, C., and Sanchez Perez, G. (1991). “Phase diagram and optical energy gaps for CuInyGa1-ySe2 alloys,” Phys. Status Solidi A PSSABA 124, 427434.10.1002/pssa.2211240206CrossRefGoogle Scholar
Wei, S.-H., Zhang, S. B., and Zunger, A. (1998). “Effects of Ga addition to CuInSe2 on its electronic, structural and defect properties,” Appl. Phys. Lett. APPLAB 72, 31993201.10.1063/1.121548CrossRefGoogle Scholar