(Keynote) Degradation Processes in Solid Oxide Cell Ni-YSZ Electrodes

, , , , , , and

© 2022 ECS - The Electrochemical Society
, , Citation Scott A Barnett et al 2022 Meet. Abstr. MA2022-01 1669 DOI 10.1149/MA2022-01381669mtgabs

2151-2043/MA2022-01/38/1669

Abstract

Solid oxide cells (SOCs) can have a significant impact on climate change over the next decade and beyond, in applications such as balancing renewable grid electricity via electrolytic fuel production, and producing electricity from bio-fuels combined with CO2 product sequestration. However, long-term performance degradation remains a key variable that may limit further implementation of SOCs. This talk focuses on the Ni-YSZ fuel electrode that is widely used but is known to be an important contributor to SOC degradation. Various processes that cause Ni-YSZ degradation are discussed. Results on 3D tomography measurements of accelerated Ni coarsening are described and a quantitative model is developed to predict long-term degradation. Although the results indicate that coarsening effects can be minimized in well-designed Ni-YSZ microstructures, degradation can still occur, especially during high-current-density electrolysis operation. For operation under low H2O/H2 conditions, high electrolysis current density can yield reduction of zirconia to form Ni-Zr compounds, along with substantial microstructural damage. For operation under high H2O/H2conditions, high electrolysis current density can yield Ni migration away from the electrolyte. A phase-field simulation is described that predicts this Ni migration, using actual Ni-YSZ microstructures measured using 3D tomography as the starting point, and compared with experimental observations. The model assumes that Ni transport is driven by a spatial gradient in surface tensions, i.e., a decrease in the Ni/YSZ contact angle with increasing distance from the electrolyte. Recent results on electrolysis and reversibly operated SOCs, making use of Ceria-infiltrated Ni-YSZ to improve stability, are described.

Export citation and abstract BibTeX RIS

10.1149/MA2022-01381669mtgabs