1932

Abstract

This article reviews the effects of lesions to the frontal cortex on the ability to carry out active thought, namely, to reason, think flexibly, produce strategies, and formulate and realize plans. We discuss how and why relevant neuropsychological studies should be carried out. The relationships between active thought and both intelligence and language are considered. The following basic processes necessary for effective active thought are reviewed: concentration, set switching, inhibiting potentiated responses, and monitoring and checking. Different forms of active thought are then addressed: abstraction, deduction, reasoning in well-structured and ill-structured problem spaces, novel strategy generation, and planning. We conclude that neuropsychological findings are valuable for providing information on systems rather than networks, especially information concerning prefrontal lateralization of function. We present a synthesis of the respective roles of the left and right lateral prefrontal cortex in active thought.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-psych-010416-044123
2018-01-04
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/psych/69/1/annurev-psych-010416-044123.html?itemId=/content/journals/10.1146/annurev-psych-010416-044123&mimeType=html&fmt=ahah

Literature Cited

  1. Aron AR, Fletcher PC, Bullmore ET, Sahakian BJ, Robbins TW. 2003. Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat. Neurosci. 6:2115–16 [Google Scholar]
  2. Aron AR, Monsell S, Sahakian BJ, Robbins TW. 2004. A componential analysis of task-switching deficits associated with lesions of left and right frontal cortex. Brain 127:71561–73 [Google Scholar]
  3. Bates E, Wilson SM, Saygin AP, Dick F, Sereno MI. et al. 2003. Voxel-based lesion–symptom mapping. Nat. Neurosci. 6:5448–50 [Google Scholar]
  4. Buiatti T, Mussoni A, Toraldo A, Skrap M, Shallice T. 2011. Two qualitatively different impairments in making rotation operations. Cortex 47:2166–79 [Google Scholar]
  5. Burgess PW, Gonen-Yaacovi G, Volle E. 2011. Functional neuroimaging studies of prospective memory: What have we learned so far. Neuropsychologia 49:82246–57 [Google Scholar]
  6. Burgess PW, Quayle A, Frith CD. 2001. Brain regions involved in prospective memory as determined by positive emission tomography. Neuropsychologia 39:6545–55 [Google Scholar]
  7. Burgess PW, Shallice T. 1996a. Bizarre responses, rule detection and frontal lobe lesions. Cortex 32:241–59 [Google Scholar]
  8. Burgess PW, Shallice T. 1996b. Response suppression, initiation and strategy use following frontal lobe lesions. Neuropsychologia 34:4263–72 [Google Scholar]
  9. Burgess PW, Veitch E, de Lacy Costello A, Shallice T. 2000. The cognitive and neuroanatomical correlates of multitasking. Neuropsychologia 38:6848–63 [Google Scholar]
  10. Caramazza A. 1986. On drawing inferences about the structure of normal cognitive systems from the analysis of patterns of impaired performance: the case for single-patient studies. Brain Cogn 5:141–66 [Google Scholar]
  11. Chan E, MacPherson SE, Robinson G, Turner M, Lecce F. et al. 2015. Limitations of the trail making test part-B in assessing frontal executive dysfunction. J. Int. Neuropsychol. Soc. 21:2169–74 [Google Scholar]
  12. Chua EF, Schacter DL, Rand-Giovannetti E, Sperling RA. 2006. Understanding metamemory: neural correlates of the cognitive process and subjective level of confidence in recognition memory. NeuroImage 29:41150–60 [Google Scholar]
  13. Cipolotti L, Healy C, Chan E, Bolsover F, Lecce F. et al. 2015a. The impact of different aetiologies on the cognitive performance of frontal patients. Neuropsychologia 68:21–30 [Google Scholar]
  14. Cipolotti L, Healy C, Chan E, MacPherson SE, White M. et al. 2015b. The effect of age on cognitive performance of frontal patients. Neuropsychologia 75:233–41 [Google Scholar]
  15. Cipolotti L, Healy C, Spanò B, Lecce F, Biondo F. et al. 2015c. Strategy and suppression impairments after right lateral prefrontal and orbito-frontal lesions. Brain 139:2e10 [Google Scholar]
  16. Cipolotti L, Spanò B, Healy C, Tudor-Sfetea C, Chan E. et al. 2016. Inhibition processes are dissociable and lateralized in human prefrontal cortex. Neuropsychologia 93:1–12 [Google Scholar]
  17. Cooper R, Shallice T. 2000. Contention scheduling and the control of routine activities. Cogn. Neuropsychol. 17:4297–338 [Google Scholar]
  18. Costello AL, Warrington EK. 1989. Dynamic aphasia: the selective impairment of verbal planning. Cortex 25:1103–14 [Google Scholar]
  19. Crescentini C, Seyed-Allaei S, Vallesi A, Shallice T. 2012. Two networks involved in producing and realizing plans. Neuropsychologia 50:71521–35 [Google Scholar]
  20. Croquelois A, Bogousslavsky J. 2011. Stroke aphasia: 1,500 consecutive cases. Cerebrovasc. Dis. 31:4392–99 [Google Scholar]
  21. Cummings JL. 1993. Frontal-subcortical circuits and human behavior. Arch. Neurol. 50:8873–80 [Google Scholar]
  22. De Renzi E, Barbieri C. 1992. The incidence of the grasp reflex following hemispheric lesion and its relation to frontal damage. Brain 115:1293–313 [Google Scholar]
  23. Delis DC, Kaplan E, Kramer JH. 2001. Delis-Kaplan Executive Function System (D-KEFS) San Antonio, TX: Psychol. Corp. [Google Scholar]
  24. Derrfuss J, Brass M, Neumann J, von Cramon DY. 2005. Involvement of the inferior frontal junction in cognitive control: meta‐analyses of switching and Stroop studies. Hum. Brain Mapp. 25:122–34 [Google Scholar]
  25. D'Esposito M, Postle BR. 1999. The dependence of span and delayed-response performance on prefrontal cortex. Neuropsychologia 37:1303–15 [Google Scholar]
  26. Duncan J. 2010. The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn. Sci. 14:4172–79 [Google Scholar]
  27. Duncan J. 2013. The structure of cognition: attentional episodes in mind and brain. Neuron 80:135–50 [Google Scholar]
  28. Duncan J, Owen AM. 2000. Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci 23:10475–83 [Google Scholar]
  29. Duncan J, Seitz RJ, Kolodny J, Bor D, Herzog H. et al. 2000. A neural basis for general intelligence. Science 289:5478457–60 [Google Scholar]
  30. Fleck MS, Daselaar SM, Dobbins IG, Cabeza R. 2006. Role of prefrontal and anterior cingulate regions in decision-making processes shared by memory and nonmemory tasks. Cereb. Cortex 16:111623–30 [Google Scholar]
  31. Fuster JM, Alexander GE. 1971. Neuron activity related to short-term memory. Science 173:652–54 [Google Scholar]
  32. Gentner D, Goldin-Meadow S. 2003. Language in Mind: Advances in the Study of Language and Thought Cambridge, MA: MIT Press
  33. Gilaie-Dotan S, Saygin AP, Lorenzi LJ, Rees G, Behrmann M. 2015. Ventral aspect of the visual form pathway is not critical for the perception of biological motion. PNAS 112:4E361–70 [Google Scholar]
  34. Goel V. 2007. Anatomy of deductive reasoning. Trends Cogn. Sci. 11:435–41 [Google Scholar]
  35. Goel V, Buchel C, Frith C, Dolan RJ. 2000. Dissociation of mechanisms underlying syllogistic reasoning. NeuroImage 12:504–14 [Google Scholar]
  36. Goel V, Grafman J. 2000. Role of the right prefrontal cortex in ill-structured planning. Cogn. Neuropsychol. 17:5415–36 [Google Scholar]
  37. Goel V, Tierney M, Sheesley L, Bartolo A, Vartanian O, Grafman J. 2007. Hemispheric specialization in human prefrontal cortex for resolving certain and uncertain inferences. Cereb. Cortex 17:102245–50 [Google Scholar]
  38. Goel V, Vartanian O. 2005. Dissociating the roles of right ventral lateral and dorsal lateral prefrontal cortex in generation and maintenance of hypotheses in set-shift problems. Cereb. Cortex 15:1170–77 [Google Scholar]
  39. Goldman-Rakic P. 1988. Topography of cognition: parallel distributed networks in primary association cortex. Annu. Rev. Neurosci. 11:137–56 [Google Scholar]
  40. Goldstein K. 1936. The significance of the frontal lobes for mental performances. J. Neurol. Psychopathol. 1:27–40 [Google Scholar]
  41. Hagoort P. 2013. MUC (memory, unification, control) and beyond. Front. Psychol. 4:416 [Google Scholar]
  42. Hampshire A, Chamberlain SR, Monti MM, Duncan J, Owen AM. 2010. The role of the right inferior frontal gyrus: inhibition and attentional control. NeuroImage 50:31313–19 [Google Scholar]
  43. Henson RN, Greve A, Cooper E, Gregori M, Simons JS. et al. 2016. The effects of hippocampal lesions on MRI measures of structural and functional connectivity. Hippocampus 26:111447–63 [Google Scholar]
  44. Johnson-Laird PN. 1983. Mental Models: Towards a Cognitive Science of Language, Inference, and Consciousness Cambridge, MA: Harvard Univ. Press
  45. Jung-Beeman M. 2005. Bilateral brain processes for comprehending natural language. Trends Cogn. Sci. 9:11512–18 [Google Scholar]
  46. Kahneman D, Frederick S. 2002. Representativeness revisited: attribute substitution in intuitive judgment. Heuristics of Intuitive Judgement: Extensions and Applications T Gilovich, D Griffin, D Kahneman 49–81 New York: Cambridge Univ. Press [Google Scholar]
  47. Kaller CP, Rahm B, Spreer J, Weiller C, Unterrainer JM. 2011. Dissociable contributions of left and right dorsolateral prefrontal cortex in planning. Cereb. Cortex 21:2307–17 [Google Scholar]
  48. Karnath HO, Steinbach JP. 2011. Do brain tumours allow valid conclusions on the localisation of human brain functions? Objections. Cortex 47:81004–6 [Google Scholar]
  49. Kerns JG, Cohen JD, MacDonald AW, Cho RY, Stenger VA, Carter CS. 2004. Anterior cingulate conflict monitoring and adjustments in control. Science 303:56601023–26 [Google Scholar]
  50. Khemlani S, Johnson-Laird PN. 2012. Theories of the syllogism: a meta-analysis. Psychol. Bull. 138:3427–57 [Google Scholar]
  51. Knauff M. 2013. Space to Reason: A Spatial Theory of Human Thought Cambridge, MA: MIT Press
  52. Koechlin E, Basso G, Pietrini P, Panzer S, Grafman J. 1999. The role of the anterior prefrontal cortex in human cognition. Nature 399:148–51 [Google Scholar]
  53. Levelt WJM. 1989. Speaking: From Intention to Articulation Cambridge, MA: MIT Press
  54. Lhermitte F. 1983. “Utilization behavior” and its relation to lesions of the frontal lobes. Brain 106:2237–55 [Google Scholar]
  55. Luria AR. 1966. Human Brain and Psychological Processes New York: Harper & Row
  56. Luria AR. 1970. Traumatic Aphasia: Its Syndromes, Psychology and Treatment The Hague: Mouton
  57. MacPherson SE, Healy C, Allerhand M, Spano B, Tudor-Sfetea C. et al. 2017. Cognitive reserve and cognitive performance of patients with focal frontal lesions. Neuropsychologia 96:19–28 [Google Scholar]
  58. MacPherson SE, Turner MS, Bozzali M, Cipolotti L, Shallice T. 2010. Frontal subregions mediating Elevator Counting task performance. Neuropsychologia 48:123679–82 [Google Scholar]
  59. Mah YH, Husain M, Rees G, Nachev P. 2014. Human brain lesion-deficit inference remapped. Brain 137:92522–31 [Google Scholar]
  60. Manly T, Robertson IH, Anderson V, Nimmo-Smith I. 1994. The Test of Everyday Attention (TEA-CH) Bury St. Edmunds, UK: Thames Val. Test Co. [Google Scholar]
  61. McDonald CR, Delis DC, Kramer JH, Tecoma ES, Iragui VJ. 2008. A componential analysis of proverb interpretation in patients with frontal lobe epilepsy and temporal lobe epilepsy: relationships with disease-related factors. Clin. Neuropsychol. 22:3480–96 [Google Scholar]
  62. Miller EK, Cohen JD. 2001. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24:1167–202 [Google Scholar]
  63. Milner B. 1963. Effects of different brain lesions on card sorting: the role of the frontal lobes. Arch. Neurol. 9:190–100 [Google Scholar]
  64. Milner B. 1964. Some effects of frontal lobectomy in man. The Frontal Granular Cortex and Behavior JM Warren, K Akert 313–34 New York: McGraw-Hill [Google Scholar]
  65. Miyake A, Friedman NP. 2012. The nature and organisation of individual differences in executive functions: four general conclusions. Curr. Dir. Psychol. Sci. 21:18–14 [Google Scholar]
  66. Morris RG, Miotto EC, Feigenbaum JD, Bullock P, Polkey CE. 1997. Planning ability after frontal and temporal lobe lesions in humans: the effects of selection equivocation and working memory load. Cogn. Neuropsychol. 14:71007–27 [Google Scholar]
  67. Murphy P, Shallice T, Robinson G, MacPherson SE, Turner M. et al. 2013. Impairments in proverb interpretation following focal frontal lobe lesions. Neuropsychologia 51:112075–86 [Google Scholar]
  68. Norman DA, Shallice T. 1986. Attention to action. Consciousness and Self-Regulation: Advances in Research and Theory RJ Davidson, GE Schwartz, D Shapiro 1–18 New York: Springer [Google Scholar]
  69. Papagno C, Fogliata A, Catricala E, Miniussi C. 2009. The lexical processing of abstract and concrete nouns. Brain Res 1263:78–86 [Google Scholar]
  70. Papagno C, Miracapillo C, Casarotti A, Romero Lauro LJ, Castellano A. et al. 2011. What is the role of the uncinate fasciculus? Surgical removal and proper name retrieval. Brain 134:2405–14 [Google Scholar]
  71. Paus T, Kalina M, Patočková L, Angerova Y, Cerny R. et al. 1991. Medial versus lateral frontal lobe lesions and differential impairment of central-gaze fixation maintenance in man. Brain 114:52051–67 [Google Scholar]
  72. Petrides M. 1994. Frontal lobes and working memory: evidence from investigations of the effect of cortical excisions in nonhuman primates. Handbook of Neuropsychology 9 F Boller, J Grafman 59–82 Amsterdam: Elsevier Sci. [Google Scholar]
  73. Picton TW, Stuss DT, Alexander MP, Shallice T, Binns MA, Gillingham S. 2007. Effects of focal frontal lesions on response inhibition. Cereb. Cortex 17:4826–38 [Google Scholar]
  74. Posner MI, DiGirolamo GJ. 1998. Conflict, target detection and cognitive control. The Attentive Brain R Parasuraman 401–23 Cambridge, MA: MIT Press [Google Scholar]
  75. Rapp AM, Leube DT, Erb M, Grodd W, Kircher TT. 2004. Neural correlates of metaphor processing. Cogn. Brain Res. 20:3395–402 [Google Scholar]
  76. Reverberi C, Cherubini P, Frackowiak RS, Caltagirone C, Paulesu E, Macaluso E. 2010. Conditional and syllogistic deductive tasks dissociate functionally during premise integration. Hum. Brain Mapp. 31:91430–45 [Google Scholar]
  77. Reverberi C, Lavaroni A, Gigli GL, Skrap M, Shallice T. 2005. Specific impairments of rule induction in different frontal lobe subgroups. Neuropsychologia 43:460–72 [Google Scholar]
  78. Reverberi C, Shallice T, D'Agostini S, Skrap M, Bonatti LL. 2009. Cortical bases of elementary deductive reasoning: inference, memory, and metadeduction. Neuropsychologia 47:41107–16 [Google Scholar]
  79. Rizzo A, Ferrante D, Bagnara S. 1995. Handling human error. Expertise and Technology: Cognition and Human-Computer Cooperation PC Hoc, E Cacciabue 195–212 Hillsdale, NJ: Lawrence Erlbaum [Google Scholar]
  80. Robinson G, Blair J, Cipolotti L. 1998. Dynamic aphasia: an inability to select between competing verbal responses. Brain 121:177–89 [Google Scholar]
  81. Robinson G, Cipolotti L, Walker DG, Biggs V, Bozzali M, Shallice T. 2015. Verbal suppression and strategy use: a role for the right lateral prefrontal cortex?. Brain 138:41084–96 [Google Scholar]
  82. Robinson G, Shallice T, Bozzali M, Cipolotti L. 2010. Conceptual proposition selection and the LIFG: neuropsychological evidence from a focal frontal group. Neuropsychologia 48:61652–63 [Google Scholar]
  83. Robinson G, Shallice T, Bozzali M, Cipolotti L. 2012. The differing roles of the frontal cortex in fluency tests. Brain 135:72202–14 [Google Scholar]
  84. Robinson G, Shallice T, Cipolotti L. 2005. A failure of high level verbal response selection in progressive dynamic aphasia. Cogn. Neuropsychol. 22:6661–94 [Google Scholar]
  85. Robinson G, Walker DG, Biggs V, Shallice T. 2016. When does a strategy intervention overcome a failure of inhibition? Evidence from two left frontal brain tumour cases. Cortex 79:123–9 [Google Scholar]
  86. Roca M, Parr A, Thompson R, Woolgar A, Torralva T. et al. 2010. Executive function and fluid intelligence after frontal lobe lesions. Brain 133:234–47 [Google Scholar]
  87. Roca M, Torralva T, Gleichgerrcht E, Woolgar A, Thompson R. et al. 2011. The role of area 10 (BA10) in human multitasking and in social cognition: a lesion study. Neuropsychologia 49:133525–31 [Google Scholar]
  88. Rorden C, Karnath HO. 2004. Using human brain lesions to infer function: a relic from a past era in the fMRI age?. Nat. Rev. Neurosci. 5:10812–19 [Google Scholar]
  89. Seyed-Allaei S, Avanki ZN, Bahrami B, Shallice T. 2017. Major thought restructuring: the roles of the different prefrontal cortical regions. J. Cogn. Neurosci. 2:1–15 [Google Scholar]
  90. Shallice T. 1982. Specific impairments of planning. Philos. Trans. R. Soc. B 298:1089199–209 [Google Scholar]
  91. Shallice T. 2015. Cognitive neuropsychology and its vicissitudes: the fate of Caramazza's axioms. Cogn. Neuropsychol. 32:7–8385–411 [Google Scholar]
  92. Shallice T, Burgess PW. 1991. Deficits in strategy application following frontal lobe damage in man. Brain 114:2727–41 [Google Scholar]
  93. Shallice T, Burgess PW, Schon F, Baxter DM. 1989. The origins of utilization behaviour. Brain 112:61587–98 [Google Scholar]
  94. Shallice T, Cooper RP. 2011. The Organisation of Mind Oxford, UK: Oxford Univ. Press
  95. Shallice T, Cooper RP. 2013. Is there a semantic system for abstract words?. Front. Hum. Neurosci. 7:175 [Google Scholar]
  96. Shallice T, Gillingham SM. 2012. On neuropsychological studies of prefrontal cortex: the ROBBIA approach. Principles of Frontal Lobe Function DT Stuss, RT Knight 475–89 Oxford, UK: Oxford Univ. Press [Google Scholar]
  97. Shallice T, Stuss DT, Picton TW, Alexander MP, Gillingham S. 2008. Multiple effects of prefrontal lesions on task-switching. Front. Hum. Neurosci. 2:2 [Google Scholar]
  98. Sharp DJ, Scott SK, Wise RJ. 2004. Monitoring and the controlled processing of meaning: distinct prefrontal systems. Cereb. Cortex 14:11–10 [Google Scholar]
  99. Stanovich KE. 1999. Who is Rational? Studies of Individual Differences in Reasoning Hove, UK: Psychol. Press
  100. Stuss DT, Alexander MP. 2007. Is there a dysexecutive syndrome?. Philos. Trans. R. Soc. B 362:1481901–15 [Google Scholar]
  101. Stuss DT, Alexander MP, Hamer L, Palumbo C, Dempster R. et al. 1998. The effects of focal anterior and posterior brain lesions on verbal fluency. J. Int. Neuropsychol. Soc. 4:3265–78 [Google Scholar]
  102. Stuss DT, Alexander MP, Shallice T, Picton TW, Binns MA. et al. 2005. Multiple frontal systems controlling response speed. Neuropsychologia 43:3396–417 [Google Scholar]
  103. Stuss DT, Shallice T, Alexander MP, Picton TW. 1995. A multidisciplinary approach to anterior attentional functions. Ann. N.Y. Acad. Sci. 769:1191–212 [Google Scholar]
  104. Szczepanski SM, Knight RT. 2014. Insights into human behavior from lesions to the prefrontal cortex. Neuron 83:51002–18 [Google Scholar]
  105. Thompson-Schill SL, Swick D, Farah MJ, D'Esposito M, Kan IP, Knight RT. 1998. Verb generation in patients with focal frontal lesions: a neuropsychological test of neuroimaging findings. PNAS 95:2615855–60 [Google Scholar]
  106. Tsuchida A, Fellows LK. 2013. Are core component processes of executive function dissociable within the frontal lobes? Evidence from humans with focal prefrontal damage. Cortex 49:71790–800 [Google Scholar]
  107. Urbanski M, Bréchemier ML, Garcin B, Bendetowicz D, de Schotten MT. et al. 2016. Reasoning by analogy requires the left frontal pole: lesion-deficit mapping and clinical implications. Brain 139:61783–99 [Google Scholar]
  108. Vallesi A, Mussoni A, Mondani M, Budai R, Skrap M, Shallice T. 2007a. The neural basis of temporal preparation: insights from brain tumor patients. Neuropsychologia 45:122755–63 [Google Scholar]
  109. Vallesi A, Shallice T, Walsh V. 2007b. Role of the prefrontal cortex in the foreperiod effect: TMS evidence for dual mechanisms in temporal preparation. Cereb. Cortex 17:2466–74 [Google Scholar]
  110. Varley R. 2014. Reason without much language. Lang. Sci. 46:232–44 [Google Scholar]
  111. Varley RA, Klessinger NJ, Romanowski CA, Siegal M. 2005. Agrammatic but numerate. PNAS 102:93519–24 [Google Scholar]
  112. Volle E, de Lacy Costello A, Coates LM, McGuire C, Towgood K. et al. 2012. Dissociation between verbal response initiation and suppression after prefrontal lesions. Cereb. Cortex 22:2428–40 [Google Scholar]
  113. Volle E, Gonen-Yaacova G, de Lacy Costello A, Gilbert SJ, Burgess PW. 2011. The role of rostral prefrontal cortex in prospective memory: a voxel-based lesion study. Neuropsychologia 49:82185–98 [Google Scholar]
  114. Woolgar A, Parr A, Cusack R, Thompson R, Nimmo-Smith I. et al. 2010. Fluid intelligence loss linked to restricted regions of damage within frontal and parietal cortex. PNAS 107:3314899–902 [Google Scholar]
  115. Yokoyama O, Miura N, Watanabe J, Takemoto A, Uchida S. et al. 2010. Right frontopolar cortex activity correlates with reliability of retrospective rating of confidence in short-term recognition memory performance. Neurosci. Res. 68:3199–206 [Google Scholar]
/content/journals/10.1146/annurev-psych-010416-044123
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error