1932

Abstract

Super-resolution fluorescence microscopy techniques are powerful tools to investigate polymer systems. In this review, we address how these techniques have been applied to hydrogel nano- and microparticles, so-called nano- or microgels. We outline which research questions on microgels could be addressed and what new insights could be achieved. Studies of the morphology, shape, and deformation of microgels; their internal compartmentalization; the cross-linker distribution and polarity inside them; and their dynamics and diffusion are summarized. In particular, the abilities to super-resolve structures in three dimensions have boosted the research field and have also allowed researchers to obtain impressive 3D images of deformed microgels. Accessing information beyond 3D localization, such as spectral and lifetime properties and correlative imaging or the combination of data with other methods, shines new light onto polymer systems and helps us understand their complexity in detail. Such future trends and developments are also addressed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-062422-022601
2023-04-24
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/physchem/74/1/annurev-physchem-062422-022601.html?itemId=/content/journals/10.1146/annurev-physchem-062422-022601&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Karg M, Pich A, Hellweg T, Hoare T, Lyon LA et al. 2019. Nanogels and microgels: from model colloids to applications, recent developments, and future trends. Langmuir 35:196231–55
    [Google Scholar]
  2. 2.
    Plamper FA, Richtering W. 2017. Functional microgels and microgel systems. Acc. Chem. Res. 50:2131–40
    [Google Scholar]
  3. 3.
    Oberdisse J, Hellweg T. 2020. Recent advances in stimuli-responsive core-shell microgel particles: synthesis, characterisation, and applications. Colloid Polym. Sci. 298:7921–35
    [Google Scholar]
  4. 4.
    Nishizawa Y, Honda K, Suzuki D. 2021. Recent development in the visualization of microgels. Chem. Lett. 50:61226–35
    [Google Scholar]
  5. 5.
    Pich A, Richtering W, eds. 2011. Chemical Design of Responsive Microgels. Adv. Polym. Sci. 234 Berlin: Springer
  6. 6.
    Richtering W, Saunders BR. 2014. Gel architectures and their complexity. Soft Matter 10:3695–702
    [Google Scholar]
  7. 7.
    Scotti A, Schulte MF, Lopez CG, Crassous JJ, Bochenek S, Richtering W. 2022. How softness matters in soft nanogels and nanogel assemblies. Chem. Rev. 122:1311675–700
    [Google Scholar]
  8. 8.
    Welsch N, Ballauff M, Lu Y 2011. Microgels as nanoreactors: applications in catalysis. Chemical Design of Responsive Microgels A Pich, W Richtering 129–63. Adv. Polym. Sci. 234 Berlin: Springer
    [Google Scholar]
  9. 9.
    Sabadasch V, Fandrich P, Annegarn M, Hellweg T. 2022. Effect of methacrylic acid in PNNPAM microgels on the catalytic activity of embedded palladium nanoparticles. Macromol. Chem. Phys. 223:112200045
    [Google Scholar]
  10. 10.
    Dirksen M, Dargel C, Meier L, Brändel T, Hellweg T. 2020. Smart microgels as drug delivery vehicles for the natural drug aescin: uptake, release and interactions. Colloid Polymer Sci. 298:6505–18
    [Google Scholar]
  11. 11.
    Feng Q, Li D, Li Q, Cao X, Dong H. 2022. Microgel assembly: fabrication, characteristics and application in tissue engineering and regenerative medicine. Bioact. Mater. 9:105–19
    [Google Scholar]
  12. 12.
    Babu S, Albertino F, Omidinia Anarkoli A, De Laporte L 2021. Controlling structure with injectable biomaterials to better mimic tissue heterogeneity and anisotropy. Adv. Healthc. Mater. 10:112002221
    [Google Scholar]
  13. 13.
    Zhang QM, Wang W, Su YQ, Hensen EJM, Serpe MJ. 2015. Biological imaging and sensing with multiresponsive microgels. Chem. Mater. 28:1259–65
    [Google Scholar]
  14. 14.
    Shu T, Hu L, Hunter H, Balasuriya N, Fang C et al. 2022. Multi-responsive micro/nanogels for optical sensing. Adv. Phys. X 7:12043185
    [Google Scholar]
  15. 15.
    Zhu M, Lu D, Lian Q, Wu S, Wang W et al. 2020. Highly swelling pH-responsive microgels for dual mode near infra-red fluorescence reporting and imaging. Nanoscale Adv. 2:94261–71
    [Google Scholar]
  16. 16.
    Go D, Rommel D, Chen L, Shi F, Sprakel J, Kühne AJC. 2017. Programmable phase transitions in a photonic microgel system: linking soft interactions to a temporal pH gradient. Langmuir 33:82011–16
    [Google Scholar]
  17. 17.
    Gao Y, Li X, Serpe MJ. 2015. Stimuli-responsive microgel-based etalons for optical sensing. RSC Adv. 5:5544074–87
    [Google Scholar]
  18. 18.
    Faulde M, Siemes E, Wöll D, Jupke A. 2018. Fluid dynamics of microgel-covered drops reveal impact on interfacial conditions. Polymers 10:8809
    [Google Scholar]
  19. 19.
    Dirksen M, Fandrich P, Goett-Zink L, Cremer J, Anselmetti D, Hellweg T. 2022. Thermoresponsive microgel-based free-standing membranes: influence of different microgel cross-linkers on membrane function. Langmuir 38:2638–51
    [Google Scholar]
  20. 20.
    Wang M, Mihut AM, Rieloff E, Dabkowska AP, Månsson LK et al. 2019. Assembling responsive microgels at responsive lipid membranes. PNAS 116:125442–50
    [Google Scholar]
  21. 21.
    Saha P, Santi M, Emondts M, Roth H, Rahimi K et al. 2020. Stimuli-responsive zwitterionic core–shell microgels for antifouling surface coatings. ACS Appl. Mater. Interfaces 12:5258223–38
    [Google Scholar]
  22. 22.
    Yunker PJ, Chen K, Gratale MD, Lohr MA, Still T, Yodh AG. 2014. Physics in ordered and disordered colloidal matter composed of poly(N-isopropylacrylamide) microgel particles. Rep. Prog. Phys. 77:5056601
    [Google Scholar]
  23. 23.
    Alsayed AM, Islam MF, Zhang J, Collings PJ, Yodh AG. 2005. Premelting at defects within bulk colloidal crystals. Science 309:57381207–10
    [Google Scholar]
  24. 24.
    Modena MM, Rühle B, Burg TP, Wuttke S. 2019. Nanoparticle characterization: what to measure?. Adv. Mater. 31:1901556
    [Google Scholar]
  25. 25.
    Scheffold F. 2020. Pathways and challenges towards a complete characterization of microgels. Nat. Commun. 11:4315
    [Google Scholar]
  26. 26.
    Nishizawa Y, Honda K, Suzuki D. 2021. Recent development in the visualization of microgels. Chem. Lett. 50:61226–35
    [Google Scholar]
  27. 27.
    Mourran A, Wu Y, Gumerov RA, Rudov AA, Potemkin II et al. 2016. When colloidal particles become polymer coils. Langmuir 32:3723–30
    [Google Scholar]
  28. 28.
    Aufderhorst-Roberts A, Baker D, Foster RJ, Cayre O, Mattsson J, Connell SD. 2018. Nanoscale mechanics of microgel particles. Nanoscale 10:3416050–61
    [Google Scholar]
  29. 29.
    Cors M, Wrede O, Genix AC, Anselmetti D, Oberdisse J, Hellweg T. 2017. Core–shell microgel-based surface coatings with linear thermoresponse. Langmuir 33:276804–11
    [Google Scholar]
  30. 30.
    Wiedemair J, Serpe MJ, Kim J, Masson JF, Lyon LA et al. 2007. In-situ AFM studies of the phase-transition behavior of single thermoresponsive hydrogel particles. Langmuir 23:1130–37
    [Google Scholar]
  31. 31.
    Matsui S, Kureha T, Hiroshige S, Shibata M, Uchihashi T, Suzuki D. 2017. Fast adsorption of soft hydrogel microspheres on solid surfaces in aqueous solution. Angew. Chem. Int. Ed. 56:4012146–49
    [Google Scholar]
  32. 32.
    Geisel K, Isa L, Richtering W 2014. The compressibility of pH-sensitive microgels at the oil–water interface: Higher charge leads to less repulsion. Angew. Chem. Int. Ed. 53:194905–9
    [Google Scholar]
  33. 33.
    Stock S, Jakob F, Röhl S, Gräff K, Kühnhammer M et al. 2021. Exploring water in oil emulsions simultaneously stabilized by solid hydrophobic silica nanospheres and hydrophilic soft PNIPAM microgel. Soft Matter 17:8258–68
    [Google Scholar]
  34. 34.
    Crassous JJ, Rochette CN, Wittemann A, Schrinner M, Ballauff M, Drechsler M. 2009. Quantitative analysis of polymer colloids by cryo-transmission electron microscopy. Langmuir 25:147862–71
    [Google Scholar]
  35. 35.
    Tiwari R, Heuser T, Weyandt E, Wang B, Walther A 2015. Polyacid microgels with adaptive hydrophobic pockets and ampholytic character: synthesis, solution properties and insights into internal nanostructure by cryogenic-TEM. Soft Matter 11:428342–53
    [Google Scholar]
  36. 36.
    Hell SW, Sahl SJ, Bates M, Zhuang X, Heintzmann R et al. 2015. The 2015 super-resolution microscopy roadmap. J. Phys. D Appl. Phys. 48:44443001
    [Google Scholar]
  37. 37.
    Möckl L, Moerner WE. 2020. Super-resolution microscopy with single molecules in biology and beyond—essentials, current trends, and future challenges. J. Am. Chem. Soc. 142:4217828–44
    [Google Scholar]
  38. 38.
    Liu S, Hoess P, Ries J. 2022. Super-resolution microscopy for structural cell biology. Annu. Rev. Biophys. 51:301–26
    [Google Scholar]
  39. 39.
    Wöll D, Flors C. 2017. Super-resolution fluorescence imaging for materials science. Small Methods 1:101700191
    [Google Scholar]
  40. 40.
    Aloi A, Voets IK. 2018. Soft matter nanoscopy. Curr. Opin. Coll. Interf. Sci. 34:59–73
    [Google Scholar]
  41. 41.
    Chapman DV, Du H, Lee WY, Wiesner UB. 2020. Optical super-resolution microscopy in polymer science. Prog. Polym. Sci. 111:101312
    [Google Scholar]
  42. 42.
    Qiang Z, Wang M. 2020. 100th anniversary of macromolecular science viewpoint: enabling advances in fluorescence microscopy techniques. ACS Macro Lett. 9:91342–56
    [Google Scholar]
  43. 43.
    Coceancigh H, Higgins DA, Ito T. 2019. Optical microscopic techniques for synthetic polymer characterization. Anal. Chem. 91:1405–24
    [Google Scholar]
  44. 44.
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S et al. 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:57931642–45
    [Google Scholar]
  45. 45.
    Rust MJ, Bates M, Zhuang X. 2006. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3:10793–96
    [Google Scholar]
  46. 46.
    Heilemann M, van de Linde S, Schüttpelz M, Kasper R, Seefeldt B et al. 2008. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed. 47:336172–76
    [Google Scholar]
  47. 47.
    Sharonov A, Hochstrasser RM. 2006. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. PNAS 103:5018911–16
    [Google Scholar]
  48. 48.
    Schnitzbauer J, Strauss MT, Schlichthaerle T, Schueder F, Jungmann R. 2017. Super-resolution microscopy with DNA-PAINT. Nat. Protoc. 12:61198–228
    [Google Scholar]
  49. 49.
    Roeffaers MBJ, De Cremer G, Libeert J, Ameloot R, Dedecker P et al. 2009. Super-resolution reactivity mapping of nanostructured catalyst particles. Angew. Chem. Int. Ed. 48:499285–89
    [Google Scholar]
  50. 50.
    Hell S. 2010. Far-field optical nanoscopy. Science 316:365–98
    [Google Scholar]
  51. 51.
    Hell S, Jakobs S, Kastrup L. 2003. Imaging and writing at the nanoscale with focused visible light through saturable optical transitions. Appl. Phys. A 77:859–60
    [Google Scholar]
  52. 52.
    Heintzmann R, Huser T. 2017. Super-resolution structured illumination microscopy. Chem. Rev. 117:2313890–908
    [Google Scholar]
  53. 53.
    Dertinger T, Colyer R, Iyer G, Weiss S, Enderlein J. 2009. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). PNAS 106:5222287–92
    [Google Scholar]
  54. 54.
    Holtzer L, Meckel T, Schmidt T. 2007. Nanometric three-dimensional tracking of individual quantum dots in cells. Appl. Phys. Lett. 90:5053902
    [Google Scholar]
  55. 55.
    Huang B, Wang W, Bates M, Zhuang X. 2008. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:5864810–13
    [Google Scholar]
  56. 56.
    Wang W, Ye F, Shen H, Moringo NA, Dutta C et al. 2019. Generalized method to design phase masks for 3D super-resolution microscopy. Opt. Express 27:3799–816
    [Google Scholar]
  57. 57.
    Pavani SRP, Thompson MA, Biteen JS, Lord SJ, Liu N et al. 2009. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. PNAS 106:92995–99
    [Google Scholar]
  58. 58.
    Lew MD, Lee SF, Badieirostami M, Moerner WE. 2011. Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects. Opt. Lett. 36:2202–4
    [Google Scholar]
  59. 59.
    Shechtman Y, Weiss LE, Backer AS, Sahl SJ, Moerner WE. 2015. Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions. Nano Lett. 15:64194–99
    [Google Scholar]
  60. 60.
    Geissbuehler S, Sharipov A, Godinat A, Bocchio N, Sandoz P et al. 2014. Live-cell multiplane three-dimensional super-resolution optical fluctuation imaging. Nat. Commun. 5:5830
    [Google Scholar]
  61. 61.
    Juette M, Gould T, Lessard M, Mlodzianoski M, Nagpure B et al. 2008. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat. Methods 5:527–29
    [Google Scholar]
  62. 62.
    Balzarotti F, Eilers Y, Gwosch KC, Gynnå AH, Westphal V et al. 2017. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355:6325606–12
    [Google Scholar]
  63. 63.
    Gwosch K, Pape J, Balzarotti F, Hoess P, Ellenberg J et al. 2020. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat. Methods 17:217–24
    [Google Scholar]
  64. 64.
    Shtengel G, Galbraith JA, Galbraith CG, Lippincott-Schwartz J, Gillette JM et al. 2009. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. PNAS 106:93125–30
    [Google Scholar]
  65. 65.
    Schmidt R, Wurm CA, Punge A, Egner A, Jakobs S, Hell SW. 2009. Mitochondrial cristae revealed with focused light. Nano Lett. 9:62508–10
    [Google Scholar]
  66. 66.
    Huang F, Sirinakis G, Allgeyer ES, Schroeder LK, Duim WC et al. 2016. Ultra-high resolution 3D imaging of whole cells. Cell 166:41028–40
    [Google Scholar]
  67. 67.
    Stock K, Sailer R, Strauss WSL, Lyttek M, Steiner R, Schneckenburger H. 2003. Variable-angle total internal reflection fluorescence microscopy (VA-TIRFM): realization and application of a compact illumination device. J. Microsc. 211:119–29
    [Google Scholar]
  68. 68.
    Bourg N, Mayet C, Dupuis G, Barroca T, Bon P et al. 2015. Direct optical nanoscopy with axially localized detection. Nat. Photon. 9:769
    [Google Scholar]
  69. 69.
    Deschamps J, Mund M, Ries J. 2014. 3D superresolution microscopy by supercritical angle detection. Opt. Express 22:2329081–91
    [Google Scholar]
  70. 70.
    Chapman DV, Du H, Lee WY, Wiesner UB. 2020. Optical super-resolution microscopy in polymer science. Progress Polymer Sci. 111:101312
    [Google Scholar]
  71. 71.
    Chan JM, Kordon AC, Zhang R, Wang M. 2021. Direct visualization of bottlebrush polymer conformations in the solid state. PNAS 118:40e2109534118
    [Google Scholar]
  72. 72.
    Danielsen SPO, Beech HK, Wang S, El-Zaatari BM, Wang X et al. 2021. Molecular characterization of polymer networks. Chem. Rev. 121:85042–92
    [Google Scholar]
  73. 73.
    Kenath GS, Karanastasis AA, Ullal CK. 2021. Super-resolution imaging of spatial heterogeneities in model thermosensitive hydrogels with implications for their origins. Macromolecules 54:177743–53
    [Google Scholar]
  74. 74.
    Hirokawa Y, Jinnai H, Nishikawa Y, Okamoto T, Hashimoto T. 1999. Direct observation of internal structures in poly(N-isopropylacrylamide) chemical gels. Macromolecules 32:217093–99
    [Google Scholar]
  75. 75.
    Deleted in proof
  76. 76.
    Kisley L, Brunetti R, Tauzin LJ, Shuang B, Yi X et al. 2015. Characterization of porous materials by fluorescence correlation spectroscopy super-resolution optical fluctuation imaging. ACS Nano 9:99158–66
    [Google Scholar]
  77. 77.
    Dutta C, Bishop LDC, Zepeda OJ, Chatterjee S, Flatebo C, Landes CF. 2020. Imaging switchable protein interactions with an active porous polymer support. J. Phys. Chem. B 124:224412–20
    [Google Scholar]
  78. 78.
    Saini A, Kisley L. 2019. Fluorescence microscopy of biophysical protein dynamics in nanoporous hydrogels. J. Appl. Phys. 126:8081101
    [Google Scholar]
  79. 79.
    Kwon J, Elgawish MS, Shim SH. 2022. Bleaching-resistant super-resolution fluorescence microscopy. Adv. Sci. 9:9e2101817
    [Google Scholar]
  80. 80.
    Kozma E, Kele P. 2019. Fluorogenic probes for super-resolution microscopy. Org. Biomol. Chem. 17:2215–33
    [Google Scholar]
  81. 81.
    Collot M, Pfister S, Klymchenko AS. 2022. Advanced functional fluorescent probes for cell plasma membranes. Curr. Opin. Chem. Biol. 69:102161
    [Google Scholar]
  82. 82.
    Tyson J, Hu K, Zheng S, Kidd P, Dadina N et al. 2021. Extremely bright, near-IR emitting spontaneously blinking fluorophores enable ratiometric multicolor nanoscopy in live cells. ACS Central Sci. 7:81419–26
    [Google Scholar]
  83. 83.
    Gelissen APH, Oppermann A, Caumanns T, Hebbeker P, Turnhoff SK et al. 2016. 3D structures of responsive nanocompartmentalized microgels. Nano Lett. 16:117295–301
    [Google Scholar]
  84. 84.
    Gau E, Mate DM, Zou Z, Oppermann A, Töpel A et al. 2017. Sortase-mediated surface functionalization of stimuli-responsive microgels. Biomacromolecules 18:92789–98
    [Google Scholar]
  85. 85.
    Xu W, Rudov A, Oppermann A, Wypysek S, Kather M et al. 2019. Synthesis of polyampholyte Janus-like microgels by coacervation of reactive precursors in precipitation polymerization. Angew. Chem. Int. Ed. 59:31248–55
    [Google Scholar]
  86. 86.
    Peng H, Huang X, Oppermann A, Melle A, Weger L et al. 2016. A facile approach for thermal and reduction dual-responsive prodrug nanogels for intracellular doxorubicin delivery. J. Mater. Chem. B 4:477572–83
    [Google Scholar]
  87. 87.
    Hoppe Alvarez L, Eisold S, Gumerov RA, Strauch M, Rudov AA et al. 2019. Deformation of microgels at solid-liquid interfaces visualized in three-dimension. Nano Lett. 19:128862–67
    [Google Scholar]
  88. 88.
    Hoppe Alvarez L, Rudov AA, Gumerov RA, Lenssen P, Simon U et al. 2021. Controlling microgel deformation via deposition method and surface functionalization of solid supports. Phys. Chem. Chem. Phys. 23:84927–34
    [Google Scholar]
  89. 89.
    Eisold S, Hoppe Alvarez L, Ran K, Hengsbach R, Fink G et al. 2021. DNA introduces an independent temperature responsiveness to thermosensitive microgels and enables switchable plasmon coupling as well as controlled uptake and release. Nanoscale 13:52875–82
    [Google Scholar]
  90. 90.
    Conley GM, Nöjd S, Braibanti M, Schurtenberger P, Scheffold F. 2016. Superresolution microscopy of the volume phase transition of PNIPAM microgels. Colloids Surf. A 499:18–23
    [Google Scholar]
  91. 91.
    Conley GM, Aebischer P, Nöjd S, Schurtenberger P, Scheffold F. 2017. Jamming and overpacking fuzzy microgels: deformation, interpenetration, and compression. Sci. Adv. 3:10e1700969
    [Google Scholar]
  92. 92.
    Bergmann S, Wrede O, Huser T, Hellweg T. 2018. Super-resolution optical microscopy resolves network morphology of smart colloidal microgels. Phys. Chem. Chem. Phys. 20:75074–83
    [Google Scholar]
  93. 93.
    Wrede O, Bergmann S, Hannappel Y, Hellweg T, Huser T. 2020. Smart microgels investigated by super-resolution fluorescence microscopy: influence of the monomer structure on the particle morphology. Soft Matter 16:348078–84
    [Google Scholar]
  94. 94.
    Otto P, Bergmann S, Sandmeyer A, Dirksen M, Wrede O et al. 2020. Resolving the internal morphology of core-shell microgels with super-resolution fluorescence microscopy. Nanoscale Adv. 2:1323–31
    [Google Scholar]
  95. 95.
    Purohit A, Centeno SP, Wypysek SK, Richtering W, Wöll D. 2019. Microgel PAINT – nanoscopic polarity imaging of adaptive microgels without covalent labelling. Chem. Sci. 10:4410336–42
    [Google Scholar]
  96. 96.
    Siemes E, Nevskyi O, Sysoiev D, Turnhoff SK, Oppermann A et al. 2018. Nanoscopic visualization of cross-linking density in polymer networks with diarylethene photoswitches. Angew. Chem. Int. Ed. 57:3812280–84
    [Google Scholar]
  97. 97.
    Karanastasis AA, Zhang Y, Kenath GS, Lessard MD, Bewersdorf J, Ullal CK. 2018. 3D mapping of nanoscale crosslink heterogeneities in microgels. Mater. Horiz. 5:61130–36
    [Google Scholar]
  98. 98.
    Karanastasis AA, Kenath GS, Sundararaman R, Ullal CK. 2019. Quantification of functional crosslinker reaction kinetics via super-resolution microscopy of swollen microgels. Soft Matter 15:459336–42
    [Google Scholar]
  99. 99.
    Meldal M, Tornøe CW. 2008. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev. 108:82952–3015
    [Google Scholar]
  100. 100.
    Johansson JR, Beke-Somfai T, Said Stålsmeden A, Kann N 2016. Ruthenium-catalyzed azide alkyne cycloaddition reaction: scope, mechanism, and applications. Chem. Rev. 116:2314726–68
    [Google Scholar]
  101. 101.
    Beliu G, Kurz A, Kuhlemann A, Behringer-Pliess L, Meub M et al. 2019. Bioorthogonal labeling with tetrazine-dyes for super-resolution microscopy. Commun. Biol. 2:261
    [Google Scholar]
  102. 102.
    Roubinet B, Bossi ML, Alt P, Leutenegger M, Shojaei H et al. 2016. Carboxylated photoswitchable diarylethenes for biolabeling and super-resolution RESOLFT microscopy. Angew. Chem. Int. Ed. 55:4915429–33
    [Google Scholar]
  103. 103.
    Patterson GH, Lippincott-Schwartz J. 2002. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:55881873–77
    [Google Scholar]
  104. 104.
    Heilemann M, van de Linde S, Mukherjee A, Sauer M. 2009. Super-resolution imaging with small organic fluorophores. Angew. Chem. Int. Ed. 48:376903–8
    [Google Scholar]
  105. 105.
    Nevskyi O, Sysoiev D, Oppermann A, Huhn T, Wöll D. 2016. Nanoscopic visualization of soft matter using fluorescent diarylethene photoswitches. Angew. Chem. Int. Ed. 55:4112698–702
    [Google Scholar]
  106. 106.
    Nevskyi O, Sysoiev D, Dreier J, Stein SC, Oppermann A et al. 2018. Fluorescent diarylethene photoswitches—a universal tool for super-resolution microscopy in nanostructured materials. Small 14:101703333
    [Google Scholar]
  107. 107.
    Bharadwaj S, Niebuur BJ, Nothdurft K, Richtering W, van der Vegt NFA, Papadakis CM 2022. Cononsolvency of thermoresponsive polymers: where we are now and where we are going. Soft Matter 18:152884–909
    [Google Scholar]
  108. 108.
    Stieger M, Richtering W, Pedersen JS, Lindner P. 2004. Small-angle neutron scattering study of structural changes in temperature sensitive microgel colloids. J. Chem. Phys. 120:136197–206
    [Google Scholar]
  109. 109.
    Lampe A, Haucke V, Sigrist SJ, Heilemann M, Schmoranzer J. 2012. Multi-color direct storm with red emitting carbocyanines. Biol. Cell 104:4229–37
    [Google Scholar]
  110. 110.
    Tadeus G, Lampe A, Schmoranzer J. 2015. SDmixer—a versatile software tool for spectral demixing of multicolor single molecule localization data. Methods Appl. Fluoresc. 3:3037001
    [Google Scholar]
  111. 111.
    Witte J, Kyrey T, Lutzki J, Dahl AM, Houston J et al. 2019. A comparison of the network structure and inner dynamics of homogeneously and heterogeneously crosslinked PNIPAM microgels with high crosslinker content. Soft Matter 15:51053–64
    [Google Scholar]
  112. 112.
    Schulte MF, Bochenek S, Brugnoni M, Scotti A, Mourran A, Richtering W. 2021. Stiffness tomography of ultra-soft nanogels by atomic force microscopy. Angew. Chem. Int. Ed. 60:52280–87
    [Google Scholar]
  113. 113.
    Murray BS. 2019. Microgels at fluid-fluid interfaces for food and drinks. Adv. Colloid Interface Sci. 271:101990
    [Google Scholar]
  114. 114.
    Vialetto J, Ramakrishna SN, Isa L 2022. In-situ imaging of the three-dimensional shape of soft responsive particles at fluid interfaces by atomic force microscopy. Sci. Adv. 8:45eabq2019
    [Google Scholar]
  115. 115.
    Camerin F, Fernández-Rodríguez MA, Rovigatti L, Antonopoulou MN, Gnan N et al. 2019. Microgels adsorbed at liquid–liquid interfaces: a joint numerical and experimental study. ACS Nano 13:44548–59
    [Google Scholar]
  116. 116.
    Yang D, Tenhu H, Hietala S. 2020. Bicatalytic poly(N-acryloyl glycinamide) microgels. Eur. Polym. J. 133:109760
    [Google Scholar]
  117. 117.
    Mertens MAS, Thomas F, Nöth M, Moegling J, El-Awaad I et al. 2019. One-pot two-step chemoenzymatic cascade for the synthesis of a bis-benzofuran derivative. Eur. J. Org. Chem. 2019:376341–46
    [Google Scholar]
  118. 118.
    Peng H, Huang X, Oppermann A, Melle A, Weger L et al. 2016. A facile approach for thermal and reduction dual-responsive prodrug nanogels for intracellular doxorubicin delivery. J. Mater. Chem. B 4:477572–83
    [Google Scholar]
  119. 119.
    Scotti A, Bochenek S, Brugnoni M, Fernandez-Rodriguez MA, Schulte MF et al. 2019. Exploring the colloid-to-polymer transition for ultra-low crosslinked microgels from three to two dimensions. Nat. Commun. 10:11418
    [Google Scholar]
  120. 120.
    Seiffert S. 2017. Origin of nanostructural inhomogeneity in polymer-network gels. Polym. Chem. 8:314472–87
    [Google Scholar]
  121. 121.
    Boon N, Schurtenberger P. 2017. Swelling of micro-hydrogels with a crosslinker gradient. Phys. Chem. Chem. Phys. 19:3523740–46
    [Google Scholar]
  122. 122.
    Klymchenko AS. 2017. Solvatochromic and fluorogenic dyes as environment-sensitive probes: design and biological applications. Acc. Chem. Res. 50:2366–75
    [Google Scholar]
  123. 123.
    Bongiovanni MN, Godet J, Horrocks MH, Tosatto L, Carr AR et al. 2016. Multi-dimensional super-resolution imaging enables surface hydrophobicity mapping. Nat. Commun. 7:13544
    [Google Scholar]
  124. 124.
    Moon S, Yan R, Kenny SJ, Shyu Y, Xiang L et al. 2017. Spectrally resolved, functional super-resolution microscopy reveals nanoscale compositional heterogeneity in live-cell membranes. J. Am. Chem. Soc. 139:10944–47
    [Google Scholar]
  125. 125.
    Song KH, Zhang Y, Wang G, Sun C, Zhang HF. 2019. Three-dimensional biplane spectroscopic single-molecule localization microscopy. Optica 6:6709–15
    [Google Scholar]
  126. 126.
    Song KH, Zhang Y, Brenner B, Sun C, Zhang H. 2020. Symmetrically dispersed spectroscopic single-molecule localization microscopy. Light Sci. Appl. 9:92
    [Google Scholar]
  127. 127.
    Levitt JA, Chung PH, Suhling K. 2015. Spectrally resolved fluorescence lifetime imaging of Nile red for measurements of intracellular polarity. J. Biomed. Opt. 20:9096002
    [Google Scholar]
  128. 128.
    Shen H, Tauzin LJ, Baiyasi R, Wang W, Moringo N et al. 2017. Single particle tracking: from theory to biophysical applications. Chem. Rev. 117:117331–76
    [Google Scholar]
  129. 129.
    Saxton MJ. 2008. Single-particle tracking: connecting the dots. Nat. Methods 5:8671–72
    [Google Scholar]
  130. 130.
    Chenouard N, Smal I, de Chaumont F, Maska M, Sbalzarini IF et al. 2014. Objective comparison of particle tracking methods. Nat. Methods 11:3281–89
    [Google Scholar]
  131. 131.
    Ernst D, Köhler J, Weiss M. 2014. Probing the type of anomalous diffusion with single-particle tracking. Phys. Chem. Chem. Phys. 16:177686–91
    [Google Scholar]
  132. 132.
    Schürings MP, Nevskyi O, Eliasch K, Michel AK, Liu B et al. 2016. Diffusive motion of linear microgel assemblies in solution. Polymers 8:12413
    [Google Scholar]
  133. 133.
    Wiese M, Lohaus T, Haussmann J, Wessling M. 2019. Charged microgels adsorbed on porous membranes - a study of their mobility and molecular retention. J. Membr. Sci. 588:117190
    [Google Scholar]
  134. 134.
    Gustavsson AK, Ghosh RP, Petrov PN, Liphardt JT, Moerner WE. 2022. Fast and parallel nanoscale three-dimensional tracking of heterogeneous mammalian chromatin dynamics. Mol. Biol. Cell 33:6ar47
    [Google Scholar]
  135. 135.
    Virtanen OLJ, Purohit A, Brugnoni M, Wöll D, Richtering W. 2016. Controlled synthesis and fluorescence tracking of highly uniform poly(N-isopropylacrylamide) microgels. J. Vis. Exp.11554419
    [Google Scholar]
  136. 136.
    Deshmukh OS, van den Ende D, Cohen Stuart M, Mugele F, Duits MH 2015. Hard and soft colloids at fluid interfaces: adsorption, interactions, assembly & rheology. Adv. Colloid Interface Sci. 222:215–27
    [Google Scholar]
  137. 137.
    Guzmán E, Maestro A. 2022. Soft colloidal particles at fluid interfaces.. Polymers 14:61133
    [Google Scholar]
  138. 138.
    Minato H, Murai M, Watanabe T, Matsui S, Takizawa M et al. 2018. The deformation of hydrogel microspheres at the air/water interface. Chem. Commun. 54:8932–35
    [Google Scholar]
  139. 139.
    Bi W, Yeow EKL. 2020. Single-particle tracking of the formation of a pseudoequilibrium state prior to charged microgel cluster formation at interfaces. NPG Asia Mater. 12:172
    [Google Scholar]
  140. 140.
    Huang S, Gawlitza K, von Klitzing R, Gilson L, Nowak J et al. 2016. Microgels at the water/oil interface: in situ observation of structural aging and two-dimensional magnetic bead microrheology. Langmuir 32:3712–22
    [Google Scholar]
  141. 141.
    Magde D, Webb WW, Elson E. 1972. Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29:11705–8
    [Google Scholar]
  142. 142.
    Papadakis CM, Košovan P, Richtering W, Wöll D. 2014. Polymers in focus: fluorescence correlation spectroscopy. Colloid Polym. Sci. 292:2399–411
    [Google Scholar]
  143. 143.
    Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW. 1976. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16:91055–69
    [Google Scholar]
  144. 144.
    Li Y, Kleijn JM, Cohen Stuart MA, Slaghek T, Timmermans J, Norde W 2011. Mobility of lysozyme inside oxidized starch polymer microgels. Soft Matter 7:51926–35
    [Google Scholar]
  145. 145.
    Di Lorenzo F, Seiffert S. 2013. Macro- and microrheology of heterogeneous microgel packings. Macromolecules 46:51962–72
    [Google Scholar]
  146. 146.
    Hauck N, Seixas N, Centeno SP, Schlüßler R, Cojoc G et al. 2018. Droplet-assisted microfluidic fabrication and characterization of multifunctional polysaccharide microgels formed by multicomponent reactions. Polymers 10:101055
    [Google Scholar]
  147. 147.
    Li H, Zheng K, Yang J, Zhao J 2020. Anomalous diffusion inside soft colloidal suspensions investigated by variable length scale fluorescence correlation spectroscopy. ACS Omega 5:1911123–30
    [Google Scholar]
  148. 148.
    Wong JE, Müller CB, Diez-Pascual AM, Richtering W. 2009. Study of layer-by-layer films on thermoresponsive nanogels using temperature-controlled dual-focus fluorescence correlation spectroscopy. J. Phys. Chem. B 113:4915907–13
    [Google Scholar]
  149. 149.
    Barbotin A, Galiani S, Urbančič I, Eggeling C, Booth MJ. 2019. Adaptive optics allows STED-FCS measurements in the cytoplasm of living cells. Opt. Exp. 27:1623378–95
    [Google Scholar]
  150. 150.
    King JT, Yu C, Wilson WL, Granick S. 2014. Super-resolution study of polymer mobility fluctuations near c*. ACS Nano 8:98802–9
    [Google Scholar]
  151. 151.
    Adhikari S, Orrit M. 2022. Progress and perspectives in single-molecule optical spectroscopy. J. Chem. Phys. 156:16160903
    [Google Scholar]
  152. 152.
    Datta R, Heaster TM, Sharick JT, Gillette AA, Skala MC. 2020. Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications. J. Biomed. Opt. 25:071203
    [Google Scholar]
  153. 153.
    Thiele JC, Helmerich DA, Oleksiievets N, Tsukanov R, Butkevich E et al. 2020. Confocal fluorescence-lifetime single-molecule localization microscopy. ACS Nano 14:1014190–200
    [Google Scholar]
  154. 154.
    Oleksiievets N, Thiele JC, Weber A, Gregor I, Nevskyi O et al. 2020. Wide-field fluorescence lifetime imaging of single molecules. J. Phys. Chem. A 124:173494–500
    [Google Scholar]
  155. 155.
    Thiele JC, Jungblut M, Helmerich DA, Tsukanov R, Chizhik A et al. 2022. Isotropic three-dimensional dual-color super-resolution microscopy with metal-induced energy transfer. Sci. Adv. 8:23eabo2506
    [Google Scholar]
  156. 156.
    Ito S, Funaoka M, Hanasaki I, Takei S, Morimoto M et al. 2022. Visualization of the microstructure and the position-dependent diffusion coefficient in a blended polymer solid using photo-activation localization microscopy combined with single-molecule tracking based on one-color fluorescence-switching of diarylethene. Polym. Chem. 13:6736–40
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-062422-022601
Loading
/content/journals/10.1146/annurev-physchem-062422-022601
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error