1932

Abstract

The basic body plan of vertebrates, as typified by the complex head structure, evolved from the last common ancestor approximately 530 Mya. In this review, we present a brief overview of historical discussions to disentangle the various concepts and arguments regarding the evolutionary development of the vertebrate body plan. We then explain the historical transition of the arguments about the vertebrate body plan from merely epistemological comparative morphology to comparative embryology as a scientific treatment on this topic. Finally, we review the current progress of molecular evidence regarding the basic vertebrate body plan, focusing on the link between the basic vertebrate body plan and the evolutionarily conserved developmental stages (phylotypic stages).

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-091212-153404
2014-08-31
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/genom/15/1/annurev-genom-091212-153404.html?itemId=/content/journals/10.1146/annurev-genom-091212-153404&mimeType=html&fmt=ahah

Literature Cited

  1. Adachi N, Kuratani S. 1.  2012. Development of head and trunk mesoderm in the dogfish, Scyliorhinus torazame: I. Embryology and morphology of the head cavities and related structures. Evol. Dev. 14:234–56 [Google Scholar]
  2. Balfour EM. 2.  1874. A preliminary account of the development of the elasmobranch fishes. Q. J. Microsc. Sci. 14:323–64 [Google Scholar]
  3. Ballard W. 3.  1981. Morphogenetic movements and fate maps of vertebrates. Am. Zool. 21:391–99 [Google Scholar]
  4. Benton MJ. 4.  2005. Vertebrate Palaeontology Malden, MA: Blackwell, 3rd ed..
  5. Bininda-Emonds OR, Jeffery JE, Richardson MK. 5.  2003. Inverting the hourglass: quantitative evidence against the phylotypic stage in vertebrate development. Proc. R. Soc. B 270:341–46 [Google Scholar]
  6. Burton JN, Adey A, Patwardhan RP, Qiu R, Kitzman JO, Shendure J. 6.  2013. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol. 31:1119–25 [Google Scholar]
  7. Carroll SB, Grenier JK, Weatherbee SD. 7.  2004. From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design Malden, MA: Blackwell, 2nd ed..
  8. Comte A, Roux J, Robinson-Rechavi M. 8.  2010. Molecular signaling in zebrafish development and the vertebrate phylotypic period. Evol. Dev. 12:144–56 [Google Scholar]
  9. Damas H. 9.  1944. Recherches sur le développement de Lampetra fluviatilis L.: contribution à l'étude de la céphalogenèse des vertébrés. Arch. Biol. 55:1–248 [Google Scholar]
  10. De Robertis EM. 10.  2008. Evo-devo: variations on ancestral themes. Cell 132:185–95 [Google Scholar]
  11. De Robertis EM, Sasai Y. 11.  1996. A common plan for dorsoventral patterning in Bilateria. Nature 380:37–40 [Google Scholar]
  12. Dohrn A. 12.  1875. Der Ursprung der Wirbelthiere und das Princip des Functionswechsels. Genealogische Skizzen. Leipzig, Ger: Wilhelm Engelmann
  13. Domazet-Loso T, Tautz D. 13.  2010. A phylogenetically based transcriptome age index mirrors ontogenetic divergence patterns. Nature 468:815–18 [Google Scholar]
  14. Duboule D. 14.  1994. Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Dev. Suppl. 1994:135–42 [Google Scholar]
  15. Froriep A. 15.  1892. Entwicklungsgeschichte des Kopfes [part 1]. Anat. Hefte Abt. 2 Erg. Anat. Entwicklungsgesch. 1:521–605 [Google Scholar]
  16. Froriep A. 16.  1894. Entwicklungsgeschichte des Kopfes [part 2]. Anat. Hefte Abt. 2 Erg. Anat. Entwicklungsgesch. 3:396–459 [Google Scholar]
  17. Gaskell WH. 17.  1889. Spinal and cranial nerves. J. Anat. Physiol. 23:v–vi [Google Scholar]
  18. Gegenbaur C. 18.  1871. Ueber die Kopfnerven von Hexanchus und ihre Verhältniss zur “Wirbeltheorie” des Schädels. Jena Z. Med. Naturwiss. 6:497–599 [Google Scholar]
  19. Gegenbaur C. 19.  1872. Untersuchungen zur vergleichenden Anatomie der Wirbelthiere 3 Das Kopfskelet der Selachier, als Grundlage zur Beurtheilung der Genese des Kopfskeletes der Wirbelthiere Leipzig, Ger: Wilhelm Engelmann
  20. Goethe JW. 20.  1790. Das Schädelgrüt aus sechs Wirbelknochen aufgebaut. Zur Naturwissenschaft überhaupt, besonders zur Morphologie 2 Stuttgart/Tübingen, Ger: J.G. Gotta [Google Scholar]
  21. Goodrich ES. 21.  1918. On the development of the segments of the head in Scyllium. Q. J. Microsc. Sci. 63:1–30 [Google Scholar]
  22. Goodrich ES. 22.  1930. Studies on the Structure and Development of Vertebrates London: Macmillan
  23. Goodsir J. 23.  1844. On the anatomy of Amphioxus lanceolatus; Lancelet, Yarrell. Trans. R. Soc. Edinb. 15:247–63 [Google Scholar]
  24. Haeckel E. 24.  1866. Generelle Morphologie der Organismen. Allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte Descendenz-Theorie. Berlin: Georg Reimer
  25. Haeckel E. 25.  1876. The Evolution of Man 1 New York: Fowle (English translation of Anthropogenie, 3rd ed.)
  26. Hazkani-Covo E, Wool D, Graur D. 26.  2005. In search of the vertebrate phylotypic stage: a molecular examination of the developmental hourglass model and von Baer's third law. J. Exp. Zool. B 304:150–58 [Google Scholar]
  27. Hejnol A, Martindale MQ. 27.  2008. Acoel development supports a simple planula-like urbilaterian. Philos. Trans. R. Soc. Lond. B 363:1493–501 [Google Scholar]
  28. Hubrecht AAW. 28.  1883. On the ancestral form of the chordata. Q. J. Microsc. Sci. 23:349–68 [Google Scholar]
  29. Huxley TH. 29.  1858. The Croonian Lecture: on the theory of the vertebrate skull. Proc. Zool. Soc. Lond. 9:381–457 [Google Scholar]
  30. Huxley TH. 30.  1874. On the classification of the animal kingdom. J. Linn. Soc. Lond. 12:199–226 [Google Scholar]
  31. Irie N, Kuratani S. 31.  2011. Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis. Nat. Commun. 2:248 [Google Scholar]
  32. Irie N, Sehara-Fujisawa A. 32.  2007. The vertebrate phylotypic stage and an early bilaterian-related stage in mouse embryogenesis defined by genomic information. BMC Biol. 5:1 [Google Scholar]
  33. Jollie MT. 33.  1977. Segmentation of the vertebrate head. Am. Zool. 17:323–33 [Google Scholar]
  34. Kalinka AT, Tomancak P. 34.  2012. The evolution of early animal embryos: conservation or divergence?. Trends Ecol. Evol. 27:385–93 [Google Scholar]
  35. Kalinka AT, Varga KM, Gerrard DT, Preibisch S, Corcoran DL. 35.  et al. 2010. Gene expression divergence recapitulates the developmental hourglass model. Nature 468:811–14 [Google Scholar]
  36. Kasahara M. 36.  2007. The 2R hypothesis: an update. Curr. Opin. Immunol. 19:547–52 [Google Scholar]
  37. Kingsbury BF. 37.  1920. The developmental origin of the notochord. Science 51:190–93 [Google Scholar]
  38. Kingsbury BF. 38.  1926. Branchiomerism and the theory of head segmentation. J. Morphol. 42:83–109 [Google Scholar]
  39. Kingsbury BF, Adelmann HB. 39.  1926. The morphological plan of the head. Q. J. Microsc. Sci. 68:239–86 [Google Scholar]
  40. Knoll A. 40.  2011. The multiple origins of complex multicellularity. Annu. Rev. Earth Planet. Sci. 39:217–39 [Google Scholar]
  41. Koltzoff NK. 41.  1902. Entwicklungsgeschichte des Kopfes von Petromyzon Planeri. Ein Beitrag zur Lehre über Metamerie des Wirbelthierkopfes. Bull. Soc. Imp. Nat. Moscou 16:259–589 [Google Scholar]
  42. Kowalevsky A. 42.  1871. Embryologische Studien an Würmen und Arthropoden. Mem. Acad. Imp. Sci. St. Petersb. Ser. VII 16:1–70 [Google Scholar]
  43. Kuratani S. 43.  1997. Spatial distribution of postotic crest cells defines the head/trunk interface of the vertebrate body: embryological interpretation of peripheral nerve morphology and evolution of the vertebrate head. Anat. Embryol. 195:1–13 [Google Scholar]
  44. Kuratani S. 44.  2003. Evolutionary developmental biology and vertebrate head segmentation: a perspective from developmental constraint. Theory Biosci. 122:230–51 [Google Scholar]
  45. Kuratani S. 45.  2008. Is the vertebrate head segmented? Evolutionary and developmental considerations. Integr. Comp. Biol. 48:647–57 [Google Scholar]
  46. Kuratani S, Horigome N, Hirano S. 46.  1999. Developmental morphology of the head mesoderm and reevaluation of segmental theories of the vertebrate head: evidence from embryos of an agnathan vertebrate, Lampetra japonica. Dev. Biol. 210:381–400 [Google Scholar]
  47. Levin M, Hashimshony T, Wagner F, Yanai I. 47.  2012. Developmental milestones punctuate gene expression in the Caenorhabditis embryo. Dev. Cell 22:1101–8 [Google Scholar]
  48. Leydig F. 48.  1864. Vom Bau des thierischen Korpers. Handbuch der vergleichenden Anatomie 1 Tübingen, Ger: Laupp and Siebeck
  49. Marshall AM. 49.  1881. On the head cavities and associated nerves of elasmobranchs. Q. J. Microsc. Sci. 21:72–97 [Google Scholar]
  50. Mattick JS. 50.  2004. RNA regulation: a new genetics?. Nat. Rev. Genet. 5:316–23 [Google Scholar]
  51. Meckel JF. 51.  1811. Beyträge zur vergleichenden Anatomie Leipzig, Ger: Reclam
  52. Meier S. 52.  1979. Development of the chick embryo mesoblast: formation of the embryonic axis and establishment of the metameric pattern. Dev. Biol. 73:24–45 [Google Scholar]
  53. Morse ES. 53.  1872. Notes on the early stages of an ascidian (Cynthia pyriformis, Rathke). Proc. Boston Soc. Nat. Hist. 14:351–56 [Google Scholar]
  54. Mwinyi A, Bailly X, Bourlat SJ, Jondelius U, Littlewood DT, Podsiadlowski L. 54.  2010. The phylogenetic position of Acoela as revealed by the complete mitochondrial genome of Symsagittifera roscoffensis. BMC Evol. Biol. 10:309 [Google Scholar]
  55. Noden DM, Trainor PA. 55.  2005. Relations and interactions between cranial mesoderm and neural crest populations. J. Anat. 207:575–601 [Google Scholar]
  56. Oken L. 56.  1807. Über die Bedeutung der Schädelknochen Jena, Ger: Göbhardt Bamberg
  57. Owen R. 57.  1854. The Principal Forms of the Skeleton and of the Teeth Philadelphia: Blanchard and Lea
  58. Poe S, Wake MH. 58.  2004. Quantitative tests of general models for the evolution of development. Am. Nat. 164:415–22 [Google Scholar]
  59. Quint M, Drost HG, Gabel A, Ullrich KK, Bonn M, Grosse I. 59.  2012. A transcriptomic hourglass in plant embryogenesis. Nature 490:98–101 [Google Scholar]
  60. Raff A. 60.  1996. The Shape of Life: Genes, Development, and the Evolution of Animal Form Chicago: Univ. Chicago Press
  61. Richards RJ. 61.  2014. Did Goethe and Schelling endorse species evolution? Unpubl. manuscr., Univ. Chicago. http://home.uchicago.edu/∼rjr6/articles/Did%20Goethe%20and%20Schelling%20Endorse%20Species%20Evolution.pdf
  62. Richardson MK, Hanken J, Gooneratne ML, Pieau C, Raynaud A. 62.  et al. 1997. There is no highly conserved embryonic stage in the vertebrates: implications for current theories of evolution and development. Anat. Embryol. 196:91–106 [Google Scholar]
  63. Riedl R. 63.  1978. Order in Living Organisms New York: Wiley-Interscience
  64. Romer AS. 64.  1972. The vertebrate as a dual animal—somatic and visceral. Evol. Biol. 6:121–56 [Google Scholar]
  65. Roux J, Robinson-Rechavi M. 65.  2008. Developmental constraints on vertebrate genome evolution. PLoS Genet. 4:e1000311 [Google Scholar]
  66. Sander K. 66.  1983. The Evolution of Patterning Mechanisms: Gleanings from Insect Embryogenesis Cambridge, UK: Cambridge Univ. Press
  67. Saussure FD. 67.  1972. Cours de linguistique générale. Édition critique préparée par Tullio de Mauro Paris: Payot
  68. Sedgwick A. 68.  1884. On the origin of metameric segmentation and some other morphological questions. Q. J. Microsc. Sci. 24:43–82 [Google Scholar]
  69. Semper C. 69.  1874. Ueber die Stammverwandtschaft der Wirbelthiere und Anneliden; vorlaufige Mittheilung. Cent. Med. Wiss. 12:545–47 [Google Scholar]
  70. Slack JM, Holland PW, Graham CF. 70.  1993. The zootype and the phylotypic stage. Nature 361:490–92 [Google Scholar]
  71. Tena JJ, González-Aguilera C, Fernández-Miñan A, Vázquez-Marín J. 71.  et al. 2014. Comparative epigenomics in distantly related teleost species identifies conserved cis-regulatory nodes active during the vertebrate phylotypic period. Genome Res. 24:1075–85
  72. Tiedemann F. 72.  1808. Zoologie: zu seinen Vorlesungen entworfen 1 Landshut, Ger: Weber
  73. van Wijhe JW. 73.  1882. Über die Mesodermsegmente und die Entwicklung der Nerven des Selachierkopfes Groningen, Neth: Verl. Akad. Wiss. Amsterdam
  74. von Baer KE. 74.  1828. Über Entwicklungsgeschichte der Thiere: Beobachtung und Reflektion Königsberg, Ger: Gebrüdern Bornträger
  75. von Kupffer C. 75.  1890. Die Entwicklung von Petromyzon planeri. Bonn, Ger: Max Cohen and Son
  76. von Kupffer C. 76.  1894. Studien zur vergleichenden Entwicklungsgeschichte des Kopfes der Kranioten 2 Die Entwicklung des Kopfes von Ammocoetes planeri. Munich: J.F. Lehmann
  77. Wang Z, Pascual-Anaya J, Zadissa A, Li W, Niimura Y. 77.  et al. 2013. The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nat. Genet. 45:701–6 [Google Scholar]
  78. Wimsatt WC. 78.  1986. Developmental constraints, generative entrenchment, and the innate-acquired distinction. Integrating Scientific Disciplines PW Bechtel 185–208 Dordrecht, Neth: Springer [Google Scholar]
  79. Wolpert L. 79.  1991. The Triumph of the Embryo Oxford, UK: Oxford Univ. Press
/content/journals/10.1146/annurev-genom-091212-153404
Loading
/content/journals/10.1146/annurev-genom-091212-153404
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error