1932

Abstract

Reducing CO in the atmosphere and preventing its release from point-source emitters, such as coal and natural gas–fired power plants, is a global challenge measured in gigatons. Capturing CO at this scale will require a portfolio of gas-separation technologies to be applied over a range of applications in which the gas mixtures and operating conditions will vary. Chemical scrubbing using absorption is the current state-of-the-art technology. Considerably less attention has been given to other gas-separation technologies, including adsorption and membranes. It will take a range of creative solutions to reduce CO at scale, thereby slowing global warming and minimizing its potential negative environmental impacts. This review focuses on the current challenges of adsorption and membrane-separation processes. Technological advancement of these processes will lead to reduced cost, which will enable subsequent adoption for practical scaled-up application.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060713-040100
2014-06-07
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/5/1/annurev-chembioeng-060713-040100.html?itemId=/content/journals/10.1146/annurev-chembioeng-060713-040100&mimeType=html&fmt=ahah

Literature Cited

  1. Bottoms R. 1.  1930. Processes for separating acid gases. US Patent No. 1,783,901Provides first patent associated with the use of amines for CO2 capture, filed by Robert Bottoms in 1930.
  2. Finkenrath M. 2.  2011. Cost and Performance of Carbon Dioxide Capture from Power Generation France: Int. Energy Agency Paris
  3. Rubin ES, Rao AB, Chen C. 3.  2003. Understanding the Cost of CO2 Capture and Storage for Fossil Fuel Power Plants Presented at 28th Int. Tech. Conf. Coal Util. Fuel Syst., Clearwater, FL
  4. Rubin ES. 4.  2010. Integrated Environmental Control Model, Version 6.2.4 Pittsburgh, PA: Carnegie Mellon Univ.Provides software that allows one to simulate exhaust from combustion and gasification processes for energy and cost estimates of emissions control technologies for CO2, NOx, SOx, particulate matter, and mercury.
  5. Int. Energy Agency 2011. CO2 Emissions From Fuel Combustion Highlights 2011 Edition. Paris: Int. Energy Agency
  6. Pet Br.6.  2011. BP Energy Outlook 2030, Statistical Review. London: Br. Pet.
  7. Allen MR, Frame DJ, Huntingford C, Jones CD, Lowe JA. 7.  et al. 2009. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458:1163–66 [Google Scholar]
  8. Socolow R, Desmond M, Aines R, Blackstock J, Bolland O. 8.  et al. 2011. Direct Air Capture of CO2 with Chemicals—A Technology Assessment for the APS Panel on Public Affairs College Park, MD: Am. Phys. Soc.Report sponsored by the American Physical Society that estimates a direct air capture cost of ∼$600 ton−1. CO2 captured based upon current state-of-the-art absorption technologies.
  9. Solomon S, Plattner GK, Knutti R, Friedlingstein P. 9.  2009. Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA 106:1704–9 [Google Scholar]
  10. Int. Energy Agency 2013. Technology Roadmap: Carbon Capture and Storage. Paris: Int. Energy Agency
  11. Wilcox J. 11.  2012. Carbon Capture New York: SpringerRepresents the only textbook on the subject to date.
  12. Maring BJ, Webley PA. 11a.  2013. A new simplified pressure/vacuum swing adsorption model for rapid adsorbent screening for CO2 capture applications. Int. J. Greenh. Gas Control 15:16–31 [Google Scholar]
  13. Wang Q, Luo J, Zhong Z, Borgna A. 12.  2011. CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ. Sci. 4:42–55 [Google Scholar]
  14. Tosti S, Basile A, Chiappetta G, Rizzello C, Violante V. 13.  2003. Pd-Ag membrane reactors for water gas shift reaction. Chem. Eng. J. 93:23–30 [Google Scholar]
  15. Uemiya S, Sato N, Ando H, Kikuchi E. 14.  1991. The water gas shift reaction assisted by a Pd membrane reactor. Ind. Eng. Chem. Res. 30:585–89 [Google Scholar]
  16. Zevenhoven R, Kilpinen P. 15.  2001. Control of Pollutants in Flue Gases and Fuel Gases Turku, Finl: Nordic Energy Res. Progr. Hels. Univ. Technol.
  17. Abdollahi M, Yu J, Liu PK, Ciora R, Sahimi M, Tsotsis TT. 16.  2010. Hydrogen production from coal-derived syngas using a catalytic membrane reactor based process. J. Membr. Sci. 363:160–69 [Google Scholar]
  18. Li H, Dijkstra J, Pieterse J, Boon J, Van den Brink R, Jansen D. 17.  2010. Towards full-scale demonstration of hydrogen-selective membranes for CO2 capture: inhibition effect of WGS-components on the H2 permeation through three Pd membranes of 44 cm long. J. Membr. Sci. 363:204–11 [Google Scholar]
  19. Brandani F, Ruthven DM. 18.  2004. The effect of water on the adsorption of CO2 and C3H8 on type X zeolites. Ind. Eng. Chem. Res. 43:8339–44 [Google Scholar]
  20. Shen W, He Y, Zhang S, Li J, Fan W. 19.  2012. Yeast-based microporous carbon materials for carbon dioxide capture. ChemSusChem. 5:1274–79 [Google Scholar]
  21. Wang Y, Zhou Y, Liu C, Zhou L. 20.  2008. Comparative studies of CO2 and CH4 sorption on activated carbon in presence of water. Colloids Surf. A Physicochem. Eng. Asp. 322:14–18 [Google Scholar]
  22. Özgür Y, Benin AI, Faheem SA, Jakubczak P, Low JJ. 21.  et al. 2009. Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules. Chem. Mater. 21:1425–30 [Google Scholar]
  23. Chen YF, Babarao R, Sandler SI, Jiang JW. 22.  2010. Metal-organic framework MIL-101 for adsorption and effect of terminal water molecules: from quantum mechanics to molecular simulation. Langmuir 26:8743–50 [Google Scholar]
  24. Nguyen JG, Cohen SM. 23.  2010. Moisture-resistant and superhydrophobic metal−organic frameworks obtained via postsynthetic modification. J. Am. Chem. Soc. 132:4560–61 [Google Scholar]
  25. Yang J, Grzech A, Mulder FM, Dingemans TJ. 24.  2011. Methyl modified MOF-5: a water stable hydrogen storage material. Chem. Commun. 47:5244–46 [Google Scholar]
  26. Rezaei F, Webley P. 25.  2010. Structured adsorbents in gas separation processes. Sep. Purif. Technol. 70:243–56 [Google Scholar]
  27. Caplow M. 26.  1968. Kinetics of carbamate formation and breakdown. J. Am. Chem. Soc. 90:6795–803 [Google Scholar]
  28. Sartori G, Savage DW. 27.  1983. Sterically hindered amines for CO2 removal from gases. Ind. Eng. Chem. Fundam. 22:239–49 [Google Scholar]
  29. Drese JH, Choi S, Lively RP, Koros WJ, Fauth DJ. 28.  et al. 2009. Synthesis-structure-property relationships for hyperbranched aminosilica CO2 adsorbents. Adv. Funct. Mater. 19:3821–32One of the most comprehensive reviews to date on sorbents for CO2 capture. [Google Scholar]
  30. Qi G, Wang Y, Estevez L, Duan X, Anako N. 29.  et al. 2011. High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules. Energy Environ. Sci. 4:444–52 [Google Scholar]
  31. Casas N, Schell J, Blom R, Mazzotti M. 30.  2013. MOF and UiO-67/MCM-41 adsorbents for pre-combustion CO2 capture by PSA: breakthrough experiments and process design. Sep. Purif. Technol. 112:34–48 [Google Scholar]
  32. Schell J, Casas N, Mazzotti M. 31.  2009. Pre-combustion CO2 capture for IGCC plants by an adsorption process. Energy Procedia 1:655–60 [Google Scholar]
  33. Xiao P, Wilson S, Xiao G, Singh R, Webley P. 32.  2009. Novel adsorption processes for carbon dioxide capture within a IGCC process. Energy Procedia 1:631–38 [Google Scholar]
  34. García S, Pis JJ, Rubiera F, Pevida C. 33.  2013. Predicting mixed-gas adsorption equilibria on activated carbon for precombustion CO2 capture. Langmuir 29:6042–52 [Google Scholar]
  35. Furukawa H, Ko N, Go YB, Aratani N, Choi SB. 34.  et al. 2010. Ultrahigh porosity in metal-organic frameworks. Science 329:424–28 [Google Scholar]
  36. Liu J, Thallapally PK, McGrail BP, Brown DR, Liu J. 35.  2012. Progress in adsorption-based CO2 capture by metal-organic frameworks. Chem. Soc. Rev. 41:2308–22 [Google Scholar]
  37. Cavenati S, Grande CA, Rodrigues AE. 36.  2004. Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. J. Chem. Eng. Data 49:1095–101 [Google Scholar]
  38. Himeno S, Komatsu T, Fujita S. 37.  2005. High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons. J. Chem. Eng. Data 50:369–76 [Google Scholar]
  39. Chen ZH, Deng SB, Wei HR, Wang B, Huang J, Yu G. 38.  2013. Activated carbons and amine-modified materials for carbon dioxide capture—a review. Front. Environ. Sci. Eng. 7:326–40 [Google Scholar]
  40. Wei J, Zhou DD, Sun ZK, Deng YH, Xia YY, Zhao DY. 39.  2013. A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors. Adv. Funct. Mater. 23:2322–28 [Google Scholar]
  41. Sevilla M, Valle-Vigón P, Fuertes AB. 40.  2011. N-doped polypyrrole-based porous carbons for CO2 capture. Adv. Funct. Mater. 21:2781–87 [Google Scholar]
  42. Ma XY, Cao MH, Hu CW. 41.  2013. Bifunctional HNO3 catalytic synthesis of N-doped porous carbons for CO2 capture. J. Mater. Chem. A 1:913–18 [Google Scholar]
  43. Wang JC, Senkovska I, Oschatz M, Lohe MR, Borchardt L. 42.  et al. 2013. Imine-linked polymer-derived nitrogen-doped microporous carbons with excellent CO2 capture properties. ACS Appl. Mater. Interfaces 5:3160–67 [Google Scholar]
  44. Gu JM, Kim WS, Hwang YK, Huh S. 43.  2013. Template-free synthesis of N-doped porous carbons and their gas sorption properties. Carbon 56:208–17 [Google Scholar]
  45. Jin Y, Hawkins SC, Huynh CP, Su S. 44.  2013. Carbon nanotube modified carbon composite monoliths as superior adsorbents for carbon dioxide capture. Energy Environ. Sci. 6:2591–96 [Google Scholar]
  46. Saleh M, Tiwari JN, Kemp KC, Yousuf M, Kim KS. 45.  2013. Highly selective and stable carbon dioxide uptake in polyindole-derived microporous carbon materials. Environ. Sci. Technol. 47:5467–73 [Google Scholar]
  47. Dawson R, Stevens LA, Drage TC, Snape CE, Smith MW. 46.  et al. 2012. Impact of water coadsorption for carbon dioxide capture in microporous polymer sorbents. J. Am. Chem. Soc. 134:10741–44 [Google Scholar]
  48. Samanta A, Zhao A, Shimizu GKH, Sarkar P, Gupta R. 47.  2012. Post-combustion CO2 capture using solid sorbents: a review. Ind. Eng. Chem. Res. 51:1438–63 [Google Scholar]
  49. Hudson MR, Queen WL, Mason JA, Fickel DW, Lobo RF, Brown CM. 48.  2012. Unconventional, highly selective CO2 adsorption in zeolite SSZ-13. J. Am. Chem. Soc. 134:1970–73 [Google Scholar]
  50. Bae TH, Hudson MR, Mason JA, Queen WL, Dutton JJ. 49.  et al. 2013. Evaluation of cation-exchanged zeolite adsorbents for post-combustion carbon dioxide capture. Energy Environ. Sci. 6:128–38 [Google Scholar]
  51. Bae YS, Snurr RQ. 50.  2011. Development and evaluation of porous materials for carbon dioxide separation and capture. Angew Chem. Int. Ed. 50:11586–96 [Google Scholar]
  52. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA. 51.  et al. 2008. Reporting physisorption data for gas/solid systems. Handbook of Heterogeneous Catalysis G Ertl, H Knözinger, F Schüth, J Weitkamp 1217–30 Weinheim, Ger: Wiley-VCH Verlag [Google Scholar]
  53. Ruthven DM. 52.  1984. Principles of Adsorption and Adsorption Processes New York: Wiley InterSci.Represents the most thorough and complete textbook on the subject of adsorption. Ruthven strongly couples material properties to the overall separation process.
  54. Ruthven DM, Farooq S, Knaebel KS. 53.  1994. Pressure Swing Adsorption New York: VCH Publ.
  55. Alpay E, Scott DM. 54.  1992. The linear driving force model for fast-cycle adsorption and desorption in a spherical particle. Chem. Eng. Sci. 47:499–502 [Google Scholar]
  56. Raghavan NS, Hassan MM, Ruthven DM. 55.  1986. Numerical simulation of a PSA system using a pore diffusion model. Chem. Eng. Sci. 41:2787–93 [Google Scholar]
  57. Yang RT. 56.  1997. Gas Separation by Adsorption Processes London: Imp. Coll. Press
  58. Kapoor A, Yang RT. 57.  1989. Kinetic separation of methane–carbon dioxide mixture by adsorption on molecular sieve carbon. Chem. Eng. Sci. 44:1723–33 [Google Scholar]
  59. Qinglin H, Sundaram SM, Farooq S. 58.  2002. Revisiting transport of gases in the micropores of carbon molecular sieves. Langmuir 19:393–405 [Google Scholar]
  60. Bhadra SJ, Farooq S. 59.  2011. Separation of methane-nitrogen mixture by pressure swing adsorption for natural gas upgrading. Ind. Eng. Chem. Res. 50:14030–45 [Google Scholar]
  61. Khalighi M, Farooq S, Karimi IA. 60.  2012. Nonisothermal pore diffusion model for a kinetically controlled pressure swing adsorption process. Ind. Eng. Chem. Res. 51:10659–70 [Google Scholar]
  62. Rezaei F, Webley P. 61.  2009. Optimum structured adsorbents for gas separation processes. Chem. Eng. Sci. 64:5182–91 [Google Scholar]
  63. Zhao M, Minett AI, Harris AT. 62.  2012. A review of techno-economic models for the retrofitting of conventional pulverised-coal power plants for post-combustion capture (PCC) of CO2. Energy Environ. Sci. 6:25–40 [Google Scholar]
  64. Merkel TC, Lin H, Wei X, Baker R. 63.  2010. Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J. Membr. Sci. 359:126–39 [Google Scholar]
  65. Low BT, Zhao L, Merkel TC, Weber M, Stolten D. 64.  2013. A parametric study of the impact of membrane materials and process operating conditions on carbon capture from humidified flue gas. J. Membr. Sci. 431:139–55 [Google Scholar]
  66. Powell CE, Qiao GG. 65.  2006. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J. Membr. Sci. 279:1–49 [Google Scholar]
  67. Han SH, Lee YM. 66.  2011. Recent high performance polymer membranes for CO2 separation. Membrane Engineering for the Treatment of Gases, Volume 1: Gas-Separation Problems with Membranes E Drioli, G Barbieri 84–124 Cambridge: R. Soc. Chem. [Google Scholar]
  68. Shekhawat D, Luebke DR, Pennline HW. 67.  2003. A Review of Carbon Dioxide Selective Membranes Washington, DC: Natl. Energy Technol. Lab.
  69. Robeson L, Burgoyne W, Langsam M, Savoca A, Tien C. 68.  1994. High performance polymers for membrane separation. Polymer 35:4970–78 [Google Scholar]
  70. Robeson LM. 69.  1991. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 62:165–85 [Google Scholar]
  71. Robeson LM. 70.  2008. The upper bound revisited. J. Membr. Sci. 320:390–400Represents the first attempt to screen membranes based on the trade-off relationship between their permeability and selectivity. [Google Scholar]
  72. Buonomenna MG, Yave W, Golemme G. 71.  2012. Some approaches for high performance polymer based membranes for gas separation: block copolymers, carbon molecular sieves and mixed matrix membranes. RSC Adv. 2:10745 [Google Scholar]
  73. Ramasubramanian K, Ho WW. 72.  2011. Recent developments on membranes for post-combustion carbon capture. Curr. Opin. Chem. Eng. 1:47–54 [Google Scholar]
  74. Kim J, Abouelnasr M, Lin LC, Smit B. 73.  2013. Large-scale screening of zeolite structures for CO2 membrane separations. J. Am. Chem. Soc. 135:7545–52 [Google Scholar]
  75. Krishna R, van Baten JM. 74.  2010. In silico screening of zeolite membranes for CO2 capture. J. Membr. Sci. 360:323–33 [Google Scholar]
  76. Brunetti A, Scura F, Barbieri G, Drioli E. 75.  2010. Membrane technologies for CO2 separation. J. Membr. Sci. 359:115–25 [Google Scholar]
  77. Burkhanov GS, Gorina NB, Kolchugina NB, Roshan NR, Slovetsky DI, Chistov EM. 76.  2011. Palladium-based alloy membranes for separation of high purity hydrogen from hydrogen-containing gas mixtures. Platin. Metals Rev. 55:3–12 [Google Scholar]
  78. Morreale BD, Ciocco MV, Enick RM, Morsi BI, Howard BH. 77.  et al. 2003. The permeability of hydrogen in bulk palladium at elevated temperatures and pressures. J. Membr. Sci. 212:87–97 [Google Scholar]
  79. Ockwig NW, Nenoff TM. 78.  2007. Membranes for hydrogen separation. Chem. Rev. 107:4078–110 [Google Scholar]
  80. Paglieri S, Way J. 79.  2002. Innovations in palladium membrane research. Sep. Purif. Rev. 31:1–169Offers a detailed review by Paglieri on metallic membrane separation for H2 purification (precombustion capture of CO2). [Google Scholar]
  81. Ku AY, Kulkarni P, Shisler R, Wei W. 80.  2011. Membrane performance requirements for CO2 capture using H2-selective membranes in IGCC power plants. J. Membr. Sci. 367:233–39 [Google Scholar]
  82. Wilcox J. 81.  2011. Nitrogen-permeable membranes and uses thereof. US Patent No. 13/011,748 Represents the first N2-selective membrane technology to date.
  83. Bredesen R, Kumakiri I, Peters T. 82.  2009. CO2 capture with membrane systems. Membrane Operations: Innovative Separations and Transformations E Drioli, L Giorno 195–220 Berlin: Wiley-VCH Verlag [Google Scholar]
  84. Lu GQ, Diniz da Costa JC, Duke M, Giessler S, Socolow R. 83.  et al. 2007. Inorganic membranes for hydrogen production and purification: a critical review and perspective. J. Colloid Interface Sci. 314:589–603 [Google Scholar]
  85. Pesiri DR, Jorgensen B, Dye RC. 84.  2003. Thermal optimization of polybenzimidazole meniscus membranes for the separation of hydrogen, methane, and carbon dioxide. J. Membr. Sci. 218:11–18 [Google Scholar]
  86. Chung TS, Shao L, Tin PS. 85.  2006. Surface modification of polyimide membranes by diamines for H2 and CO2 separation. Macromol. Rapid Commun. 27:998–1003 [Google Scholar]
  87. Low BT, Xiao Y, Chung TS, Liu Y. 86.  2008. Simultaneous occurrence of chemical grafting, cross-linking, and etching on the surface of polyimide membranes and their impact on H2/CO2 separation. Macromolecules 41:1297–309 [Google Scholar]
  88. Hosseini SS, Teoh MM, Chung TS. 87.  2008. Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks. Polymer 49:1594–603 [Google Scholar]
  89. Choi JI, Jung CH, Han SH, Park HB, Lee YM. 88.  2010. Thermally rearranged (TR) poly (benzoxazole-co-pyrrolone) membranes tuned for high gas permeability and selectivity. J. Membr. Sci. 349:358–68 [Google Scholar]
  90. Sea B-K, Kusakabe K, Morooka S. 89.  1997. Pore size control and gas permeation kinetics of silica membranes by pyrolysis of phenyl-substituted ethoxysilanes with cross-flow through a porous support wall. J. Membr. Sci. 130:41–52 [Google Scholar]
  91. Nomura M, Ono K, Gopalakrishnan S, Sugawara T, Nakao S-I. 90.  2005. Preparation of a stable silica membrane by a counter diffusion chemical vapor deposition method. J. Membr. Sci. 251:151–58 [Google Scholar]
  92. Gopalakrishnan S, Yoshino Y, Nomura M, Nair BN, Nakao S-I. 91.  2007. A hybrid processing method for high performance hydrogen-selective silica membranes. J. Membr. Sci. 297:5–9 [Google Scholar]
  93. de Vos RM, Verweij H. 92.  1998. High-selectivity, high-flux silica membranes for gas separation. Science 279:1710–11 [Google Scholar]
  94. Petersen J, Matsuda M, Haraya K. 93.  1997. Capillary carbon molecular sieve membranes derived from Kapton for high temperature gas separation. J. Membr. Sci. 131:85–94 [Google Scholar]
  95. Aoki K, Kusakabe K, Morooka S. 94.  1998. Gas permeation properties of A-type zeolite membrane formed on porous substrate by hydrothermal synthesis. J. Membr. Sci. 141:197–205 [Google Scholar]
  96. Uemiya S, Kude Y, Sugino K, Sato N, Matsuda T, Kikuchi E. 95.  1988. A palladium/porous-glass composite membrane for hydrogen separation. Chem. Lett. 10:1687–90 [Google Scholar]
  97. Bientinesi M, Petarca L. 96.  2011. Separation from Gas Mixtures through Palladium Membranes on Metallic Porous Supports Presented at 10th Int. Conf. Chem. Process Eng., Florence, Italy
  98. Basile A, Iulianelli A, Longo T, Liguori S, Falco M. 97.  2011. Pd-Based Selective Membrane State-of-the-Art London: Springer
  99. Tong HD, Gielens FC, Gardeniers JGE, Jansen HV, van Rijn CJM. 98.  et al. 2004. Microfabricated palladium−silver alloy membranes and their application in hydrogen separation. Ind. Eng. Chem. Res. 43:4182–87 [Google Scholar]
  100. Okazaki J, Pacheco Tanaka DA, Llosa Tanco MA, Wakui Y, Ikeda T. 99.  et al. 2008. Preparation and hydrogen permeation properties of thin Pd-Au alloy membranes supported on porous α-alumina tube. Mater. Trans. 49:449–52 [Google Scholar]
  101. Buxbaum RE, Marker T. 100.  1993. Hydrogen transport through non-porous membranes of palladium-coated niobium, tantalum and vanadium. J. Membr. Sci. 85:29–38 [Google Scholar]
  102. Paglieri SN, Foo KY, Way JD, Collins JP, Harper-Nixon DL. 101.  1999. A new preparation technique for Pd/alumina membranes with enhanced high-temperature stability. Ind. Eng. Chem. Res. 38:1925–36 [Google Scholar]
  103. Uemiya S, Matsuda T, Kikuchi E. 102.  1991. Hydrogen permeable palladium-silver alloy membrane supported on porous ceramics. J. Membr. Sci. 56:315–25 [Google Scholar]
  104. Dolan MD. 103.  2010. Non-Pd BCC alloy membranes for industrial hydrogen separation. J. Membr. Sci. 362:12–28 [Google Scholar]
  105. US Geol. Surv 2013. Metal Prices in the United States through 2010: U.S. Geological Survey Scientific Investigations Report. Reston, VA: US Geol. Surv.
  106. Mendes D, Mendes A, Madeira LM, Iulianelli A, Sousa JM, Basile A. 105.  2010. The water-gas shift reaction: from conventional catalytic systems to Pd-based membrane reactors—a review. Asia-Pac. J. Chem. Eng. 5:111–37 [Google Scholar]
  107. Park J-H, Beum H-T, Kim J-N, Cho S-H. 106.  2002. Numerical analysis on the power consumption of the PSA process for recovering CO2 from flue gas. Ind. Eng. Chem. Res. 41:4122–31 [Google Scholar]
  108. Na B-K, Lee H, Koo K-K, Song HK. 107.  2002. Effect of rinse and recycle methods on the pressure swing adsorption process to recover CO2 from power plant flue gas using activated carbon. Ind. Eng. Chem. Res. 41:5498–503 [Google Scholar]
  109. Reynolds SP, Ebner AD, Ritter JA. 108.  2006. Stripping PSA cycles for CO2 recovery from flue gas at high temperature using a hydrotalcite-like adsorbent. Ind. Eng. Chem. Res. 45:4278–94 [Google Scholar]
  110. Reynolds SP, Mehrotra A, Ebner AD, Ritter JA. 109.  2008. Heavy reflux PSA cycles for CO2 recovery from flue gas: part I. Performance evaluation. Adsorption 14:399–413 [Google Scholar]
  111. Zhang J, Webley PA. 110.  2008. Cycle development and design for CO2 capture from flue gas by vacuum swing adsorption. Environ. Sci. Technol. 42:563–69 [Google Scholar]
  112. Kikkinides ES, Yang RT, Cho SH. 111.  1993. Concentration and recovery of carbon dioxide from flue gas by pressure swing adsorption. Ind. Eng. Chem. Res. 32:2714–20 [Google Scholar]
  113. Xiao P, Zhang J, Webley P, Li G, Singh R, Todd R. 112.  2008. Capture of CO2 from flue gas streams with zeolite 13X by vacuum-pressure swing adsorption. Adsorption 14:575–82 [Google Scholar]
  114. Zhang J, Webley PA, Xiao P. 113.  2008. Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas. Energy Convers. Manag. 49:346–56 [Google Scholar]
  115. Liu Z, Grande CA, Li P, Yu J, Rodrigues AE. 114.  2011. Multi-bed vacuum pressure swing adsorption for carbon dioxide capture from flue gas. Sep. Purif. Technol. 81:307–17 [Google Scholar]
  116. Biegler LT, Jiang L, Fox VG. 115.  2005. Recent advances in simulation and optimal design of pressure swing adsorption systems. Sep. Purif. Rev. 33:1–39 [Google Scholar]
  117. Ko D, Siriwardane R, Biegler LT. 116.  2005. Optimization of pressure swing adsorption and fractionated vacuum pressure swing adsorption processes for CO2 capture. Ind. Eng. Chem. Res. 44:8084–94 [Google Scholar]
  118. Jiang L, Fox VG, Biegler LT. 117.  2004. Simulation and optimal design of multiple-bed pressure swing adsorption systems. AIChE J. 50:2904–17 [Google Scholar]
  119. Jiang L, Biegler LT, Fox VG. 118.  2003. Simulation and optimization of pressure-swing adsorption systems for air separation. AIChE J. 49:1140–57 [Google Scholar]
  120. Cruz P, Santos JC, Magalhães FD, Mendes A. 119.  2003. Cyclic adsorption separation processes: analysis strategy and optimization procedure. Chem. Eng. Sci. 58:3143–58 [Google Scholar]
  121. Cruz P, Magalhães FD, Mendes A. 120.  2005. On the optimization of cyclic adsorption separation processes. AIChE J. 51:1377–95 [Google Scholar]
  122. Haghpanah R, Majumder A, Nilam R, Rajendran A, Farooq S. 121.  et al. 2013. Multiobjective optimization of a four-step adsorption process for postcombustion CO2 capture via finite volume simulation. Ind. Eng. Chem. Res. 52:4249–65 [Google Scholar]
  123. Haghpanah R, Nilam R, Rajendran A, Farooq S, Karimi IA. 122.  2013. Cycle synthesis and optimization of a VSA process for postcombustion CO2 capture. AIChE J. 59:4735–48 [Google Scholar]
  124. Lively RP, Chance RR, Kelley BT, Deckman HW, Drese JH. 123.  et al. 2009. Hollow fiber adsorbents for CO2 removal from flue gas. Ind. Eng. Chem. Res. 48:7314–24 [Google Scholar]
  125. Lively RP, Chance RR, Mysona JA, Babu VP, Deckman HW. 124.  et al. 2012. CO2 sorption and desorption performance of thermally cycled hollow fiber sorbents. Int. J. Greenh. Gas Control 10:285–94 [Google Scholar]
  126. Simmons JM, Wu H, Zhou W, Yildirim T. 125.  2011. Carbon capture in metal-organic frameworks—a comparative study. Energy Environ. Sci. 4:2177–85 [Google Scholar]
  127. Krishna R, van Baten JM. 126.  2011. In silico screening of metal-organic frameworks in separation applications. Phys. Chem. Chem. Phys. 13:10593–616 [Google Scholar]
  128. Krishna R, Long JR. 127.  2011. Screening metal–organic frameworks by analysis of transient breakthrough of gas mixtures in a fixed bed adsorber. J. Phys. Chem. C 115:12941–50 [Google Scholar]
  129. Harlick PJE, Tezel FH. 128.  2004. An experimental adsorbent screening study for CO2 removal from N2. Microporous Mesoporous Mater. 76:71–79 [Google Scholar]
  130. Lin L-C, Berger AH, Martin RL, Kim J, Swisher JA. 129.  et al. 2012. In silico screening of carbon-capture materials. Nat. Mater. 11:633–41 [Google Scholar]
  131. Zhao L, Riensche E, Blum L, Stolten D. 130.  2010. Multi-stage gas separation membrane processes used in post-combustion capture: energetic and economic analyses. J. Membr. Sci. 359:160–72 [Google Scholar]
  132. Zhai H, Rubin ES. 131.  2013. Techno-economic assessment of polymer membrane systems for postcombustion carbon capture at coal-fired power plants. Environ. Sci. Technol. 47:3006–14This study is the first to investigate the cost of postcombustion capture of CO2 using a membrane technology. [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-060713-040100
Loading
/content/journals/10.1146/annurev-chembioeng-060713-040100
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error