1932

Abstract

Surround modulation (SM) is a fundamental property of sensory neurons in many species and sensory modalities. SM is the ability of stimuli in the surround of a neuron's receptive field (RF) to modulate (typically suppress) the neuron's response to stimuli simultaneously presented inside the RF, a property thought to underlie optimal coding of sensory information and important perceptual functions. Understanding the circuit and mechanisms for SM can reveal fundamental principles of computations in sensory cortices, from mouse to human. Current debate is centered over whether feedforward or intracortical circuits generate SM, and whether this results from increased inhibition or reduced excitation. Here we present a working hypothesis, based on theoretical and experimental evidence, that SM results from feedforward, horizontal, and feedback interactions with local recurrent connections, via synaptic mechanisms involving both increased inhibition and reduced recurrent excitation. In particular, strong and balanced recurrent excitatory and inhibitory circuits play a crucial role in the computation of SM.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-072116-031418
2017-07-25
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/neuro/40/1/annurev-neuro-072116-031418.html?itemId=/content/journals/10.1146/annurev-neuro-072116-031418&mimeType=html&fmt=ahah

Literature Cited

  1. Adesnik H, Bruns W, Taniguchi H, Huang ZJ, Scanziani M. 2012. A neural circuit for spatial summation in visual cortex. Nature 490:226–31 [Google Scholar]
  2. Alitto HJ, Usrey WM. 2008. Origin and dynamics of extraclassical suppression in the lateral geniculate nucleus of the macaque monkey. Neuron 57:135–46 [Google Scholar]
  3. Allman J, Miezin F, McGuinness E. 1985. Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local–global comparisons in visual neurons. Annu. Rev. Neurosci. 8:407–30 [Google Scholar]
  4. Anderson JC, Martin KAC. 2009. The synaptic connections between cortical areas V1 and V2 in macaque monkey. J. Neurosci. 29:11283–93 [Google Scholar]
  5. Angelucci A, Bressloff PC. 2006. The contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons. Prog. Brain Res. 154:93–121 [Google Scholar]
  6. Angelucci A, Levitt JB, Walton E, Hupé JM, Bullier J, Lund JS. 2002. Circuits for local and global signal integration in primary visual cortex. J. Neurosci. 22:8633–46 [Google Scholar]
  7. Angelucci A, Sainsbury K. 2006. Contribution of feedforward thalamic afferents and corticogeniculate feedback to the spatial summation area of macaque V1 and LGN. J. Comp. Neurol. 498:330–51 [Google Scholar]
  8. Angelucci A, Shushruth S. 2013. Beyond the classical receptive field: surround modulation in primary visual cortex. The New Visual Neurosciences LM Chalupa, JS Werner 425–44 Cambridge, MA: MIT Press [Google Scholar]
  9. Ascoli GA, Alonso-Nanclares L, Anderson SA, Barrionuevo G, Benavides-Piccione R. et al. 2008. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat. Rev. Neurosci. 9:557–68 [Google Scholar]
  10. Bair W, Cavanaugh JR, Movshon JA. 2003. Time course and time–distance relationships for surround suppression in macaque V1 neurons. J. Neurosci. 23:7690–701 [Google Scholar]
  11. Bardy C, Huang JY, Wang C, Fitzgibbon T, Dreher B. 2009. “Top-down” influences of ispilateral or contralateral postero-temporal visual cortices on the extra-classical receptive fields of neurons in cat's striate cortex. Neuroscience 158:951–68 [Google Scholar]
  12. Barlow HB. 1961. Possible principles underlying the transformation of sensory messages. Sensory Communication WA Rosenblith 217–34 Cambridge, MA: MIT Press [Google Scholar]
  13. Barlow HB. 1972. Single units and sensation: a neuron doctrine for perceptual psychology. ? Perception 1:371–94 [Google Scholar]
  14. Benucci A, Frazor RA, Carandini M. 2007. Standing waves and traveling waves distinguish two circuits in visual cortex. Neuron 55:103–17 [Google Scholar]
  15. Berman RA, Wurtz RH. 2011. Signals conveyed in the pulvinar pathway from superior colliculus to cortical area MT. J. Neurosci. 31:373–84 [Google Scholar]
  16. Blakemore C, Tobin EA. 1972. Lateral inhibition between orientation detectors in the cat's visual cortex. Exp. Brain Res. 15:439–40 [Google Scholar]
  17. Bonin V, Mante V, Carandini M. 2005. The suppressive field of neurons in lateral geniculate nucleus. J. Neurosci. 25:10844–56 [Google Scholar]
  18. Born RT, Bradley DC. 2005. Structure and function of visual area MT. Annu. Rev. Neurosci. 28:157–89 [Google Scholar]
  19. Bosking WH, Zhang Y, Schofield B, Fitzpatrick D. 1997. Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 17:2112–27 [Google Scholar]
  20. Bressloff PC, Cowan JD. 2002. An amplitude equation approach to contextual effects in visual cortex. Neural Comput 14:493–525 [Google Scholar]
  21. Bressloff PC, Cowan JD, Golubitsky M, Thomas PJ, Wiener MC. 2001. Geometric visual hallucinations, euclidean symmetry and the functional architecture of striate cortex. Philos. Trans. R. Soc. B 356:299–330 [Google Scholar]
  22. Bringuier V, Chavane F, Glaeser L, Frégnac Y. 1999. Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science 283:695–99 [Google Scholar]
  23. Callaway EM. 2008. Transneuronal circuit tracing with neurotropic viruses. Curr. Opin. Neurobiol. 18:617–23 [Google Scholar]
  24. Cavanaugh JR, Bair W, Movshon JA. 2002a. Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. J. Neurophysiol. 88:2530–46 [Google Scholar]
  25. Cavanaugh JR, Bair W, Movshon JA. 2002b. Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons. J. Neurophysiol. 88:2547–56 [Google Scholar]
  26. Cavanaugh JR, Monosov IE, McAlonan K, Berman R, Smith MK. et al. 2012. Optogenetic inactivation modifies monkey visuomotor behavior. Neuron 76:901–7 [Google Scholar]
  27. Chalupa LM, Williams RW, Hughes MJ. 1983. Visual response properties in the tectorecipient zone of the cat's lateral posterior-pulvinar complex: a comparison with the superior colliculus. J. Neurosci. 3:2587–96 [Google Scholar]
  28. Chariker L, Shapley R, Young L. 2016. Orientation selectivity from very sparse LGN inputs in a comprehensive model of macaque V1 cortex. J. Neurosci. 36:12368–84 [Google Scholar]
  29. Chen C, Kasamatsu T, Polat U, Norcia AM. 2001. Contrast response characteristics of long-range lateral interactions in cat striate cortex. NeuroReport 12:655–61 [Google Scholar]
  30. Chisum HJ, Mooser F, Fitzpatrick D. 2003. Emergent properties of layer 2/3 neurons reflect the collinear arrangement of horizontal connections in tree shrew visual cortex. J. Neurosci. 23:2947–60 [Google Scholar]
  31. Coen-Cagli R, Dayan P, Schwartz O. 2012. Cortical surround interactions and perceptual salience via natural scene statistics. PLOS Comput. Biol. 8:e1002405 [Google Scholar]
  32. Dantzker JL, Callaway EM. 2000. Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons. Nat. Neurosci. 3:701–7 [Google Scholar]
  33. DeAngelis GC, Freeman RD, Ohzawa I. 1994. Length and width tuning of neurons in the cat's primary visual cortex. J. Neurophysiol. 71:347–74 [Google Scholar]
  34. Denman DJ, Contreras D. 2014. The structure of pairwise correlation in mouse primary visual cortex reveals functional organization in the absence of an orientation map. Cereb. Cortex 24:2707–20 [Google Scholar]
  35. Desimone R, Schein SJ. 1987. Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form. J. Neurophysiol. 57:835–68 [Google Scholar]
  36. Dimidschstein J, Chen Q, Tremblay R, Rogers SL, Saldi GA. et al. 2016. A viral strategy for targeting and manipulating interneurons across vertebrate species. Nat. Neurosci. 19:1743–49 [Google Scholar]
  37. El-Boustani S, Sur M. 2014. Response-dependent dynamics of cell-specific inhibition in cortical networks in vivo. Nat. Commun. 5:5689 [Google Scholar]
  38. Federer F, Merlin S, Angelucci A. 2015. Anatomical and functional specificity of V2-to-V1 feedback circuits in the primate visual cortex. Presented at Soc. Neurosci., Chicago, Abstr. 699:02 [Google Scholar]
  39. Field DJ. 1987. Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A 4:2379–94 [Google Scholar]
  40. Field DJ, Golden JR, Hayes A. 2013. Contour integration and the association field. The New Visual Neurosciences LM Chalupa, JS Werner 627–38 Cambridge, MA: MIT Press [Google Scholar]
  41. Fino E, Yuste R. 2011. Dense inhibitory connectivity in neocortex. Neuron 69:1188–203 [Google Scholar]
  42. Galletti C, Gamberini M, Kutz DF, Fattori P, Luppino G, Matelli M. 2001. The cortical connections of area V6: an occipito-parietal network processing visual information. Eur. J. Neurosci. 13:1572–88 [Google Scholar]
  43. Geisler WS, Perry JS, Super BJ, Gallogly DP. 2001. Edge co-occurrence in natural images predicts contour grouping performance. Vis. Res. 41:711–24 [Google Scholar]
  44. Gerits A, Farivar R, Rosen BR, Wald LL, Boyden ES, Vanduffel W. 2012. Optogenetically induced behavioral and functional network changes in primates. Curr. Biol. 22:1722–26 [Google Scholar]
  45. Gilbert CD. 1977. Laminar differences in receptive field properties of cells in cat primary visual cortex. J. Physiol. 268:391–421 [Google Scholar]
  46. Gilbert CD, Wiesel TN. 1983. Clustered intrinsic connections in cat visual cortex. J. Neurosci. 3:1116–33 [Google Scholar]
  47. Gilbert CD, Wiesel TN. 1989. Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J. Neurosci. 9:2432–42 [Google Scholar]
  48. Girard P, Hupé JM, Bullier J. 2001. Feedforward and feedback connections between Areas V1 and V2 of the monkey have similar rapid conduction velocities. J. Neurophysiol. 85:1328–31 [Google Scholar]
  49. Goldberg ME, Wurtz RH. 1972. Activity of superior colliculus in behaving monkey. I. Visual receptive fields of single neurons. J. Neurophysiol. 35:542–59 [Google Scholar]
  50. Gonchar Y, Burkhalter A. 2003. Distinct GABAergic targets of feedforward and feedback connections between lower and higher areas of rat visual cortex. J. Neurosci. 23:10904–12 [Google Scholar]
  51. Grinvald A, Lieke EE, Frostig RD, Hildesheim R. 1994. Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. J. Neurosci. 14:2545–68 [Google Scholar]
  52. Haider B, Krause MR, Duque A, Yu Y, Touryan J. et al. 2010. Synaptic and network mechanisms of sparse and reliable visual cortical activity during nonclassical receptive field stimulation. Neuron 65:107–21 [Google Scholar]
  53. Hashemi-Nezhad M, Lyon DC. 2012. Orientation tuning of the suppressive extraclassical surround depends on intrinsic organization of V1. Cereb. Cortex 22:308–26 [Google Scholar]
  54. Henry CA, Joshi S, Xing D, Shapley RM, Hawken MJ. 2013. Functional characterization of the extraclassical receptive field in macaque V1: contrast, orientation, and temporal dynamics. J. Neurosci. 33:6230–42 [Google Scholar]
  55. Hofer SB, Ko H, Pichler B, Vogelstein J, Ros H. et al. 2011. Differential connectivity and response dynamics of excitatory and inhibitory neurons in visual cortex. Nat. Neurosci. 14:1045–52 [Google Scholar]
  56. Hubel DH, Wiesel TN. 1959. Receptive fields of single neurones in the cat's striate cortex. J. Physiol. 148:574–91 [Google Scholar]
  57. Hubel DH, Wiesel TN. 1962. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160:106–54 [Google Scholar]
  58. Hubel DH, Wiesel TN. 1965. Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J. Neurophysiol. 28:229–89 [Google Scholar]
  59. Hupé JM, James AC, Girard P, Bullier J. 2001. Response modulations by static texture surround in area V1 of the macaque monkey do not depend on feedback connections from V2. J. Neurophysiol. 85:146–63 [Google Scholar]
  60. Hupé JM, James AC, Payne BR, Lomber SG, Girard P, Bullier J. 1998. Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature 394:784–87 [Google Scholar]
  61. Ichida JM, Schwabe L, Bressloff PC, Angelucci A. 2007. Response facilitation from the “suppressive” receptive field surround of macaque V1 neurons. J. Neurophysiol. 98:2168–81 [Google Scholar]
  62. Isaacson JS, Scanziani M. 2011. How inhibition shapes cortical activity. Neuron 72:231–43 [Google Scholar]
  63. Ito M, Gilbert CD. 1999. Attention modulates contextual influences in the primary visual cortex of alert monkeys. Neuron 22:593–604 [Google Scholar]
  64. Jiang X, Shen S, Cadwell CR, Berens P, Sinz F. et al. 2015. Principles of connectivity among morphologically defined cell types in adult neocortex. Science 350:aac9462 [Google Scholar]
  65. Kapadia MK, Ito M, Gilbert CD, Westheimer G. 1995. Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys. Neuron 15:843–56 [Google Scholar]
  66. Kapfer C, Glickfeld LL, Atallah BV, Scanziani M. 2007. Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex. Nat. Neurosci. 10:743–53 [Google Scholar]
  67. Kawaguchi Y, Kubota Y. 1997. GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb. Cortex 7:476–86 [Google Scholar]
  68. Kennedy H, Bullier J. 1985. A double-labeling investigation of the afferent connectivity to cortical area V1 and V2 of the macaque monkey. J. Neurosci. 5:2815–30 [Google Scholar]
  69. Kilpelainen M, Donner K, Laurinen P. 2007. Time course of suppression by surround gratings: highly contrast-dependent, but consistently fast. Vis. Res. 47:3298–306 [Google Scholar]
  70. Kisvárday ZF, Martin KAC, Freund TF, Maglóczky Z, Whitteridge D, Somogyi P. 1986. Synaptic targets of HRP-filled layer III pyramidal cells in the cat striate cortex. Exp. Brain Res. 64:541–52 [Google Scholar]
  71. Knierim JJ, Van Essen D. 1992. Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. J. Neurophysiol. 67:961–80 [Google Scholar]
  72. Knudsen EI, Konishi M. 1978. Center-surround organization of auditory receptive fields in the owl. Science 202:778–80 [Google Scholar]
  73. Ko H, Hofer SB, Pichler B, Buchanan KA, Sjöström PJ, Mrsic-Flogel TD. 2011. Functional specificity of local synaptic connections in neocortical networks. Nature 473:87–91 [Google Scholar]
  74. Lamme VAF. 1995. The neurophysiology of figure-ground segregation in primary visual cortex. J. Neurosci. 15:1605–15 [Google Scholar]
  75. Lee SH, Kwan AC, Dan Y. 2014. Interneuron subtypes and orientation tuning. Nature 508:E1–2 [Google Scholar]
  76. Lee SH, Kwan AC, Zhang S, Phoumthipphavong V, Flannery JG. et al. 2012. Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature 488:379–83 [Google Scholar]
  77. Levick WR, Cleland BG, Dubin MW. 1972. Lateral geniculate neurons of the cat: retinal inputs and physiology. Investig. Ophthalm. 11:302–11 [Google Scholar]
  78. Levitt JB, Lund JS. 1997. Contrast dependence of contextual effects in primate visual cortex. Nature 387:73–76 [Google Scholar]
  79. Levitt JB, Lund JS. 2002. The spatial extent over which neurons in macaque striate cortex pool visual signals. Vis. Neurosci. 19:439–52 [Google Scholar]
  80. Li C, Li W. 1994. Extensive integration field beyond the classical receptive field of cat's striate cortical neurons: classification and tuning properties. Vision Res 34:2337–55 [Google Scholar]
  81. Lien AD, Scanziani M. 2013. Tuned thalamic excitation is amplified by visual cortical circuits. Nat. Neurosci. 16:1315–23 [Google Scholar]
  82. Lund JS, Wu Q, Hadingham PT, Levitt JB. 1995. Cells and circuits contributing to functional properties in area V1 of macaque monkey cerebral cortex: bases for neuroanatomically realistic models. J. Anat. 187:563–81 [Google Scholar]
  83. Ma WP, Liu BH, Li YT, Huang ZJ, Zhang LI, Tao HW. 2010. Visual representations by cortical somatostatin inhibitory neurons—selective but with weak and delayed responses. J. Neurosci. 30:14371–79 [Google Scholar]
  84. Ma Y, Hu H, Berrebi AS, Mathers PH, Agmon A. 2006. Distinct subtypes of somatostatin-containing neocortical interneurons revealed in transgenic mice. J. Neurosci. 26:5069–82 [Google Scholar]
  85. Maffei L, Fiorentini L. 1976. The unresponsive regions of visual cortical receptive fields. Vis. Res. 16:1131–39 [Google Scholar]
  86. Malach R, Amir Y, Harel M, Grinvald A. 1993. Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. PNAS 90:10469–73 [Google Scholar]
  87. Marino J, Schummers J, Lyon DC, Schwabe L, Beck O. et al. 2005. Invariant computations in local cortical networks with balanced excitation and inhibition. Nat. Neurosci. 8:194–201 [Google Scholar]
  88. Marrocco RT, McClurkin JW, Young RA. 1982. Modulation of lateral geniculate nucleus cell responsiveness by visual activation of the corticogeniculate pathway. J. Neurosci. 2:256–63 [Google Scholar]
  89. Marshel JH, Kaye AP, Nauhaus I, Callaway EM. 2012. Anterior-posterior direction opponency in the superficial mouse lateral geniculate nucleus. Neuron 76:713–20 [Google Scholar]
  90. Maunsell JHR, Van Essen DC. 1983. The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J. Neurosci. 3:2563–86 [Google Scholar]
  91. McAdams CJ, Reid CR. 2005. Attention modulates the responses of simple cells in monkey primary visual cortex. J. Neurosci. 25:11023–33 [Google Scholar]
  92. McGuire BA, Gilbert CD, Rivlin PK, Wiesel TN. 1991. Targets of horizontal connections in macaque primary visual cortex. J. Comp. Neurol. 305:370–92 [Google Scholar]
  93. McIlwain JT. 1964. Receptive fields of optic tract axons and lateral geniculate cells: peripheral extent and barbiturate sensitivity. J. Neurophysiol. 27:1154–73 [Google Scholar]
  94. Miller KD. 2016. Canonical computations of the cerebral cortex. Curr. Opin. Neurobiol. 37:75–84 [Google Scholar]
  95. Mitzdorf U. 1985. Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol. Rev. 65:37–100 [Google Scholar]
  96. Müller JR, Metha AB, Krauskopf J, Lennie P. 2003. Local signals from beyond the receptive fields of striate cortical neurons. J. Neurophysiol. 90:822–31 [Google Scholar]
  97. Nassi JJ, Cepko CL, Born RT, Beier KT. 2015. Neuroanatomy goes viral!. Front. Neuroanat. 9:80 [Google Scholar]
  98. Nassi JJ, Lomber SG, Born RT. 2013. Corticocortical feedback contributes to surround suppression in V1 of the alert primate. J. Neurosci. 33:8504–17 [Google Scholar]
  99. Nelson JI, Frost B. 1978. Orientation selective inhibition from beyond the classical visual receptive field. Brain Res 139:359–65 [Google Scholar]
  100. Nienborg H, Hasenstaub A, Nauhaus I, Taniguchi H, Huang ZJ, Callaway EM. 2013. Contrast dependence and differential contributions from somatostatin- and parvalbumin-expressing neurons to spatial integration in mouse V1. J. Neurosci. 33:11145–54 [Google Scholar]
  101. Nothdurft HC, Gallant JL, Van Essen DC. 2000. Response profiles to texture border patterns in area V1. Vis. Neurosci. 17:421–36 [Google Scholar]
  102. Nurminen L, Angelucci A. 2014. Multiple components of surround modulation in primary visual cortex: multiple neural circuits with multiple functions?. Vis. Res. 104:47–56 [Google Scholar]
  103. Nurminen L, Merlin S, Bijanzadeh M, Federer F, Angelucci A. 2017. Topdown feedback controls spatial summation and response gain in primate visual cortex. bioRxiv 094680. https://doi.org/10.1101/094680 [Crossref]
  104. Okano H, Hikishima K, Iriki A, Sasaki E. 2012. The common marmoset as a novel animal model system for biomedical and neuroscience research applications. Sem. Fetal Neonatal Med. 17:6336–40 [Google Scholar]
  105. Olsen SR, Wilson RI. 2008. Lateral presynaptic inhibition mediates gain control in an olfactory circuit. Nature 452:956–60 [Google Scholar]
  106. Olshausen BA, Field DJ. 1996. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381:607–9 [Google Scholar]
  107. Olshausen BA, Field DJ. 2004. Sparse coding of sensory inputs. Curr. Opin. Neurobiol. 14:481–87 [Google Scholar]
  108. Ozeki H, Finn IM, Schaffer ES, Miller KD, Ferster D. 2009. Inhibitory stabilization of the cortical network underlies visual surround suppression. Neuron 62:578–92 [Google Scholar]
  109. Ozeki H, Sadakane O, Akasaki T, Naito T, Shimegi S, Sato H. 2004. Relationship between excitation and inhibition underlying size tuning and contextual response modulation in the cat primary visual cortex. J. Neurosci. 24:1428–38 [Google Scholar]
  110. Pecka M, Han Y, Sader E, Mrsic-Flogel TD. 2014. Experience-dependent specialization of receptive field surround for selective coding of natural scenes. Neuron 84:457–69 [Google Scholar]
  111. Perkel DJ, Bullier J, Kennedy H. 1986. Topography of the afferent connectivity of area 17 in the macaque monkey: a double-labelling study. J. Comp. Neurol. 253:374–402 [Google Scholar]
  112. Petreanu L, Mao T, Sternson SM, Svoboda K. 2009. The subcellular organization of neocortical excitatory connections. Nature 457:1142–45 [Google Scholar]
  113. Petrov Y, McKee SP. 2006. The effect of spatial configuration on surround suppression of contrast sensitivity. J. Vis. 6:224–38 [Google Scholar]
  114. Pfeffer CK, Xue M, He M, Huang ZJ, Scanziani M. 2013. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat. Neurosci. 16:1068–76 [Google Scholar]
  115. Phillips EA, Hasenstaub AR. 2016. Asymmetric effects of activating and inactivating cortical interneurons. eLife 5:e18383 [Google Scholar]
  116. Piscopo DM, El-Danaf RN, Huberman AD, Niell CM. 2013. Diverse visual features encoded in mouse lateral geniculate nucleus. J. Neurosci. 33:4642–56 [Google Scholar]
  117. Polat U, Mizobe K, Pettet MW, Kasamatsu T, Norcia AM. 1998. Collinear stimuli regulate visual responses depending on cell's contrast threshold. Nature 391:580–84 [Google Scholar]
  118. Priebe NJ, Ferster D. 2008. Inhibition, spike threshold, and stimulus selectivity in primary visual cortex. Neuron 57:482–97 [Google Scholar]
  119. Reid RC, Alonso JM. 1995. Specificity of monosynaptic connections from thalamus to visual cortex. Nature 378:281–84 [Google Scholar]
  120. Reyes A, Lujan R, Rozov A, Burnashev N, Somogyi P, Sakmann B. 1998. Target-cell-specific facilitation and depression in neocortical circuits. Nat. Neurosci. 1:279–85 [Google Scholar]
  121. Roberts MJ, Delicato LS, Herrero J, Gieselmann MA, Thiele A. 2007. Attention alters spatial integration in macaque V1 in an eccentricity dependent manner. Nat. Neurosci. 10:1483–91 [Google Scholar]
  122. Rockland KS. 1994. The organization of feedback connections from area V2 (18) to V1 (17). Primary Visual Cortex in Primates A Peters, KS Rockland 261–99 New York: Plenum Press [Google Scholar]
  123. Rockland KS, Knutson T. 2000. Feedback connections from area MT of the squirrel monkey to areas V1 and V2. J. Comp. Neurol. 425:345–68 [Google Scholar]
  124. Rockland KS, Lund JS. 1982. Widespread periodic intrinsic connections in the tree shrew visual cortex. Science 215:1532–34 [Google Scholar]
  125. Rockland KS, Lund JS. 1983. Intrinsic laminar lattice connections in primate visual cortex. J. Comp. Neurol. 216:303–18 [Google Scholar]
  126. Rockland KS, Pandya DN. 1979. Laminar origins and terminations of cortical connections of the occcipital lobe in the rhesus monkey. Brain Res 179:3–20 [Google Scholar]
  127. Rockland KS, Virga A. 1989. Terminal arbors of individual “Feedback” axons projecting from area V2 to V1 in the macaque monkey: a study using immunohistochemistry of anterogradely transported Phaseolus vulgaris-leucoagglutinin. J. Comp. Neurol. 285:54–72 [Google Scholar]
  128. Rubin DB, Van Hooser SD, Miller KD. 2015. The stabilized supralinear network: a unifying circuit motif underlying multi-input integration in sensory cortex. Neuron 85:402–17 [Google Scholar]
  129. Sachdev RN, Krause MR, Mazer JA. 2012. Surround suppression and sparse coding in visual and barrel cortices. Front. Neur. Circuits 6:43 [Google Scholar]
  130. Sadakane O, Ozeki H, Naito T, Akasaki T, Kasamatsu T, Sato H. 2006. Contrast-dependent, contextual response modulation in primary visual cortex and lateral geniculate nucleus of the cat. Eur. J. Neurosci. 23:1633–42 [Google Scholar]
  131. Sato TK, Haider B, Hausser M, Carandini M. 2016. An excitatory basis for divisive normalization in visual cortex. Nat. Neurosci. 19:568–70 [Google Scholar]
  132. Sato TK, Hausser M, Carandini M. 2014. Distal connectivity causes summation and division across mouse visual cortex. Nat. Neurosci. 17:30–32 [Google Scholar]
  133. Sceniak MP, Chatterjee S, Callaway EM. 2006. Visual spatial summation in macaque geniculocortical afferents. J. Neurophysiol. 96:3474–84 [Google Scholar]
  134. Sceniak MP, Hawken MJ, Shapley RM. 2001. Visual spatial characterization of macaque V1 neurons. J. Neurophysiol. 85:1873–87 [Google Scholar]
  135. Sceniak MP, Ringach DL, Hawken MJ, Shapley R. 1999. Contrast's effect on spatial summation by macaque V1 neurons. Nat. Neurosci. 2:733–39 [Google Scholar]
  136. Schmidt KE, Goebel R, Löwell S, Singer W. 1997. The perceptual grouping criterion of colinearity is reflected by anisotropies of connections in the primary visual cortex. Eur. J. Neurosci. 9:1083–89 [Google Scholar]
  137. Scholl B, Tan AY, Corey J, Priebe NJ. 2013. Emergence of orientation selectivity in the mammalian visual pathway. J. Neurosci. 33:10616–24 [Google Scholar]
  138. Schwabe L, Ichida JM, Shushruth S, Mangapathy P, Angelucci A. 2010. Contrast-dependence of surround suppression in macaque V1: experimental testing of a recurrent network model. NeuroImage 52:777–92 [Google Scholar]
  139. Schwabe L, Obermayer K, Angelucci A, Bressloff PC. 2006. The role of feedback in shaping the extra-classical receptive field of cortical neurons: a recurrent network model. J. Neurosci. 26:9117–29 [Google Scholar]
  140. Schwartz O, Simoncelli EP. 2001. Natural signal statistics and sensory gain control. Nat. Neurosci. 4:819–25 [Google Scholar]
  141. Self MW, Lorteije JA, Vangeneugden J, van Beest EH, Grigore ME. et al. 2014. Orientation-tuned surround suppression in mouse visual cortex. J. Neurosci. 34:9290–304 [Google Scholar]
  142. Sengpiel F, Sen A, Blakemore C. 1997. Characteristics of surround inhibition in cat area 17. Exp. Brain Res. 116:216–28 [Google Scholar]
  143. Seybold BA, Phillips EA, Schreiner CE, Hasenstaub AR. 2015. Inhibitory actions unified by network integration. Neuron 87:1181–92 [Google Scholar]
  144. Shmuel A, Korman M, Sterkin A, Harel M, Ullman S. et al. 2005. Retinotopic axis specificity and selective clustering of feedback projections from V2 to V1 in the owl monkey. J. Neurosci. 25:2117–31 [Google Scholar]
  145. Shushruth S, Ichida JM, Levitt JB, Angelucci A. 2009. Comparison of spatial summation properties of neurons in macaque V1 and V2. J. Neurophysiol. 102:2069–83 [Google Scholar]
  146. Shushruth S, Mangapathy P, Ichida JM, Bressloff PC, Schwabe L, Angelucci A. 2012. Strong recurrent networks compute the orientation-tuning of surround modulation in primate primary visual cortex. J. Neurosci. 4:308–21 [Google Scholar]
  147. Shushruth S, Nurminen L, Bijanzadeh M, Ichida JM, Vanni S, Angelucci A. 2013. Different orientation-tuning of near and far surround suppression in macaque primary visual cortex mirrors their tuning in human perception. J. Neurosci. 33:106–19 [Google Scholar]
  148. Silberberg G, Markram H. 2007. Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells. Neuron 53:735–46 [Google Scholar]
  149. Sillito AM, Grieve KL, Jones HE, Cudeiro J, Davis J. 1995. Visual cortical mechanisms detecting focal orientation discontinuities. Nature 378:492–96 [Google Scholar]
  150. Sincich LC, Blasdel GG. 2001. Oriented axon projections in primary visual cortex of the monkey. J. Neurosci. 21:4416–26 [Google Scholar]
  151. Slovin H, Arieli A, Hildesheim R, Grinvald A. 2002. Long-term voltage-sensitive dye imaging reveals cortical dynamics in behaving monkeys. J. Neurophysiol. 88:3421–38 [Google Scholar]
  152. Solomon SG, Lee BB, Sun H. 2006. Suppressive surrounds and contrast gain in magnocellular-pathway retinal ganglion cells of macaque. J. Neurosci. 26:8715–26 [Google Scholar]
  153. Solomon SG, White AJR, Martin PR. 2002. Extra-classical receptive field properties of parvocellular, magnocellular, and koniocellular cells in the primate lateral geniculate nucleus. J. Neurosci. 22:338–49 [Google Scholar]
  154. Somers DC, Todorov EV, Siapas AG, Toth LJ, Kim DS, Sur M. 1998. A local circuit approach to understanding integration of long-range inputs in primary visual cortex. Cereb. Cortex 8:204–17 [Google Scholar]
  155. Song XM, Li CY. 2008. Contrast-dependent and contrast-independent spatial summation of primary visual cortical neurons of the cat. Cereb. Cortex 18:331–36 [Google Scholar]
  156. Sterling P, Wickelgren BG. 1969. Visual receptive fields in the superior colliculus of the cat. J. Neurophysiol. 32:1–15 [Google Scholar]
  157. Stettler DD, Das A, Bennett J, Gilbert CD. 2002. Lateral connectivity and contextual interactions in macaque primary visual cortex. Neuron 36:739–50 [Google Scholar]
  158. Stimberg M, Wimmer K, Martin R, Schwabe L, Marino J. et al. 2009. The operating regime of local computations in primary visual cortex. Cereb. Cortex 19:2166–80 [Google Scholar]
  159. Sutter ML, Schreiner CE, McLean M, O'Connor K N, Loftus WC. 1999. Organization of inhibitory frequency receptive fields in cat primary auditory cortex. J. Neurophysiol. 82:2358–71 [Google Scholar]
  160. Tremblay R, Lee S, Rudy B. 2016. GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron 91:260–92 [Google Scholar]
  161. Ts'o DY, Gilbert CD, Wiesel TN. 1986. Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis. J. Neurosci. 6:1160–70 [Google Scholar]
  162. Van den Bergh G, Zhang B, Arckens L, Chino YM. 2010. Receptive-field properties of V1 and V2 neurons in mice and macaque monkeys. J. Comp. Neurol. 518:2051–70 [Google Scholar]
  163. van Vreeswijk C, Sompolinsky H. 1996. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274:1724–26 [Google Scholar]
  164. Vanni S, Rosenström T. 2011. Local non-linear interactions in the visual cortex may reflect global decorrelation. J. Comput. Neurosci. 30:109–24 [Google Scholar]
  165. Vega-Bermudez F, Johnson KO. 1999. Surround suppression in the responses of primate SA1 and RA mechanoreceptive afferents mapped with a probe array. J. Neurophysiol. 81:2711–19 [Google Scholar]
  166. Vinje WE, Gallant JL. 2000. Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287:1273–76 [Google Scholar]
  167. Vinje WE, Gallant JL. 2002. Natural stimulation of the nonclassical receptive field increase information transmission efficiency in V1. J. Neurosci. 22:2904–15 [Google Scholar]
  168. Walker GA, Ohzawa I, Freeman RD. 1999. Asymmetric suppression outside the classical receptive field of the visual cortex. J. Neurosci. 19:10536–53 [Google Scholar]
  169. Walker GA, Ohzawa I, Freeman RD. 2000. Suppression outside the classical cortical receptive field. Vis. Neurosci. 17:369–79 [Google Scholar]
  170. Wang C, Huang JY, Bardy C, FitzGibbon T, Dreher B. 2010. Influence of ‘feedback’ signals on spatial integration in receptive fields of cat area 17 neurons. Brain Res 1328:34–48 [Google Scholar]
  171. Webb BS, Dhruv NT, Solomon SG, Taliby C, Lennie P. 2005. Early and late mechanisms of surround suppression in striate cortex of macaque. J. Neurosci. 25:11666–75 [Google Scholar]
  172. Webb BS, Tinsley CJ, Barraclough NE, Easton A, Parker A, Derrington AM. 2002. Feedback from V1 and inhibition from beyond the classical receptive field modulates the responses of neurons in the primate lateral geniculate nucleus. Vis. Neurosci. 19:583–92 [Google Scholar]
  173. Wilson NR, Runyan CA, Wang FL, Sur M. 2012. Division and subtraction by distinct cortical inhibitory networks in vivo. Nature 488:343–48 [Google Scholar]
  174. Wilson DE, Smith GB, Jacob AL, Walker T, Dimidschstein J. et al. 2017. GABAergic neurons in ferret visual cortex participate in functionally specialized networks. Neuron 93:1058–65 [Google Scholar]
  175. Wolf F, Engelken R, Puelma-Touzel M, Weidinger JDF, Neef A. 2014. Dynamical models of cortical circuits. Curr. Opin. Neurobiol. 25:228–36 [Google Scholar]
  176. Xu H, Jeong HY, Tremblay R, Rudy B. 2013. Neocortical somatostatin-expressing GABAergic interneurons disinhibit the thalamorecipient layer 4. Neuron 77:155–67 [Google Scholar]
  177. Zhang F, Aravanis AM, Adamantidis A, de Lecea L, Deisseroth K. 2007. Circuit-breakers: optical technologies for probing neural signals and systems. Nat. Rev. Neurosci. 8:577–81 [Google Scholar]
  178. Zhang S, Xu M, Kamigaki T, Hoang Do JP, Chang WC. et al. 2014. Long-range and local circuits for top-down modulation of visual cortex processing. Science 345:660–65 [Google Scholar]
  179. Zhao X, Chen H, Liu X, Cang J. 2013. Orientation-selective responses in the mouse lateral geniculate nucleus. J. Neurosci. 33:12751–63 [Google Scholar]
/content/journals/10.1146/annurev-neuro-072116-031418
Loading
/content/journals/10.1146/annurev-neuro-072116-031418
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error