1932

Abstract

Carbon monoxide (CO) poisoning leads to 50,000–100,000 emergency room visits and 1,500–2,000 deaths each year in the United States alone. Even with treatment, survivors often suffer from long-term cardiac and neurocognitive deficits, highlighting a clear unmet medical need for novel therapeutic strategies that reduce morbidity and mortality associated with CO poisoning. This review examines the prevalence and impact of CO poisoning and pathophysiology in humans and highlights recent advances in therapeutic strategies that accelerate CO clearance and mitigate toxicity. We focus on recent developments of high-affinity molecules that take advantage of the uniquely strong interaction between CO and heme to selectively bind and sequester CO in preclinical models. These scavengers, which employ heme-binding scaffolds ranging from organic small molecules to hemoproteins derived from humans and potentially even microorganisms, show promise as field-deployable antidotes that may rapidly accelerate CO clearance and improve outcomes for survivors of acute CO poisoning.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-052422-020045
2024-01-29
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/med/75/1/annurev-med-052422-020045.html?itemId=/content/journals/10.1146/annurev-med-052422-020045&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Rose JJ, Wang L, Xu Q et al. 2017. Carbon monoxide poisoning: pathogenesis, management, and future directions of therapy. Am. J. Respir. Crit. Care Med. 195:596606
    [Google Scholar]
  2. 2.
    Coburn RF, Blakemore WS, Forster RE. 1963. Endogenous carbon monoxide production in man. J. Clin. Investig. 42:117278
    [Google Scholar]
  3. 3.
    Yuan Z, De La, Cruz LK, Yang X et al. 2022. Carbon monoxide signaling: examining its engagement with various molecular targets in the context of binding affinity, concentration, and biologic response. Pharmacol. Rev. 74:82373
    [Google Scholar]
  4. 4.
    Ryter SW. 2021. Heme oxgenase-1, a cardinal modulator of regulated cell death and inflammation. Cells 10:515
    [Google Scholar]
  5. 5.
    Motterlini R, Otterbein LE. 2010. The therapeutic potential of carbon monoxide. Nat. Rev. Drug Discov. 9:72843
    [Google Scholar]
  6. 6.
    Ryter SW, Choi AM. 2013. Carbon monoxide: present and future indications for a medical gas. Korean J. Intern. Med. 28:12340
    [Google Scholar]
  7. 7.
    Rosas IO, Goldberg HJ, Collard HR et al. 2018. A phase II clinical trial of low-dose inhaled carbon monoxide in idiopathic pulmonary fibrosis. Chest 153:94104
    [Google Scholar]
  8. 8.
    Bay SK, Dong X, Bradley JA et al. 2021. Trace gas oxidizers are widespread and active members of soil microbial communities. Nat. Microbiol. 6:24656
    [Google Scholar]
  9. 9.
    Hopper CP, De La, Cruz LK, Lyles KV et al. 2020. Role of carbon monoxide in host-gut microbiome communication. Chem. Rev. 120:13273311
    [Google Scholar]
  10. 10.
    Hampson NB, Piantadosi CA, Thom SR et al. 2012. Practice recommendations in the diagnosis, management, and prevention of carbon monoxide poisoning. Am. J. Respir. Crit. Care Med. 186:1095101
    [Google Scholar]
  11. 11.
    Weaver LK. 2009. Carbon monoxide poisoning. N. Engl. J. Med. 360:121725
    [Google Scholar]
  12. 12.
    Henry CR, Satran D, Lindgren B et al. 2006. Myocardial injury and long-term mortality following moderate to severe carbon monoxide poisoning. JAMA 295:398402
    [Google Scholar]
  13. 13.
    Hampson NB, Hauff NM. 2008. Risk factors for short-term mortality from carbon monoxide poisoning treated with hyperbaric oxygen. Crit. Care Med. 36:252327
    [Google Scholar]
  14. 14.
    Kaya H, Coskun A, Beton O et al. 2016. COHgb levels predict the long-term development of acute myocardial infarction in CO poisoning. Am. J. Emerg. Med. 34:84044
    [Google Scholar]
  15. 15.
    Satran D, Henry CR, Adkinson C et al. 2005. Cardiovascular manifestations of moderate to severe carbon monoxide poisoning. J. Am. Coll. Cardiol. 45:151316
    [Google Scholar]
  16. 16.
    Hampson NB, Rudd RA, Hauff NM. 2009. Increased long-term mortality among survivors of acute carbon monoxide poisoning. Crit. Care Med. 37:194147
    [Google Scholar]
  17. 17.
    Shen C-H, Lin J-Y, Pan K-T et al. 2015. Predicting poor outcome in patients with intentional carbon monoxide poisoning and acute respiratory failure: a retrospective study. J. Med. Sci. 35:10510
    [Google Scholar]
  18. 18.
    Kao HK, Lien TC, Kou YR et al. 2009. Assessment of myocardial injury in the emergency department independently predicts the short-term poor outcome in patients with severe carbon monoxide poisoning receiving mechanical ventilation and hyperbaric oxygen therapy. Pulm. Pharmacol. Ther. 22:47377
    [Google Scholar]
  19. 19.
    Penney DG. 2007. Chronic carbon monoxide poisoning: a case series. Carbon Monoxide Poisoning DG Penney 55168. Boca Raton, FL: CRC Press
    [Google Scholar]
  20. 20.
    Chambers CA, Hopkins RO, Weaver LK et al. 2008. Cognitive and affective outcomes of more severe compared to less severe carbon monoxide poisoning. Brain Inj. 22:38795
    [Google Scholar]
  21. 21.
    Weaver LK, Valentine KJ, Hopkins RO. 2007. Carbon monoxide poisoning: risk factors for cognitive sequelae and the role of hyperbaric oxygen. Am. J. Respir. Crit. Care Med. 176:49197
    [Google Scholar]
  22. 22.
    Penney D, Benignus V, Kephalopoulos S et al. 2010. Carbon monoxide. WHO Guidelines for Indoor Air Quality: Selected Pollutants5589. Geneva: World Health Organ.
    [Google Scholar]
  23. 23.
    Mimura K, Harada M, Sumiyoshi S et al. 1999. Long-term follow-up study on sequelae of carbon monoxide poisoning; serial investigation 33 years after poisoning. Seishin Shinkeigaku Zasshi 101:592618
    [Google Scholar]
  24. 24.
    Hsiao C-L, Kuo H-C, Huang C-C. 2004. Delayed encephalopathy after carbon monoxide intoxication—long-term prognosis and correlation of clinical manifestations and neuroimages. Acta Neurol. Taiwan 13:6470
    [Google Scholar]
  25. 25.
    Weaver L, Hopkins R, Churchill S et al. 2008. Neurological outcomes 6 years after acute carbon monoxide poisoning. Undersea Hyperb. Med. 35:25859 ( Abstr. )
    [Google Scholar]
  26. 26.
    Pages B, Planton M, Buys S et al. 2014. Neuropsychological outcome after carbon monoxide exposure following a storm: a case-control study. BMC Neurol. 14:153
    [Google Scholar]
  27. 27.
    Buckley NA, Juurlink DN, Isbister G et al. 2011. Hyperbaric oxygen for carbon monoxide poisoning. Cochrane Database Syst. Rev. 2011:CD002041
    [Google Scholar]
  28. 28.
    Weaver LK, Hopkins RO, Chan KJ et al. 2002. Hyperbaric oxygen for acute carbon monoxide poisoning. N. Engl. J. Med. 347:105767
    [Google Scholar]
  29. 29.
    Schulz KF, Altman DG, Moher D. 2010. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMJ 340:c332
    [Google Scholar]
  30. 30.
    Fisher JA, Iscoe S, Fedorko L et al. 2011. Rapid elimination of CO through the lungs: coming full circle 100 years on. Exp. Physiol. 96:126269
    [Google Scholar]
  31. 31.
    Fisher JA, Iscoe S, Duffin J. 2016. Sequential gas delivery provides precise control of alveolar gas exchange. Respir. Physiol. Neurobiol. 225:6069
    [Google Scholar]
  32. 32.
    Sein Anand J, Schetz D, Waldman W et al. 2017. Hyperventilation with maintenance of isocapnia. An “old new” method in carbon monoxide intoxication. PLOS ONE 12:e0170621
    [Google Scholar]
  33. 33.
    Cooper CE. 1999. Nitric oxide and iron proteins. Biochim. Biophys. Acta 1411:290309
    [Google Scholar]
  34. 34.
    Olson JS, Foley EW, Maillett DH et al. 2003. Measurement of rate constants for reactions of O2, CO, and NO with hemoglobin. Hemoglobin Disorders: Molecular Methods and Protocols RL Nagel 6591. Totowa, NJ: Humana
    [Google Scholar]
  35. 35.
    Yonetani T, Park S, Tsuneshige A et al. 2002. Global allostery model of hemoglobin: modulation of O2 affinity, cooperativity, and Bohr effect by heterotropic allosteric effectors. J. Biol. Chem. 277:3450820
    [Google Scholar]
  36. 36.
    Hlastala MP, McKenna HP, Franada RL et al. 1976. Influence of carbon monoxide on hemoglobin-oxygen binding. J. Appl. Physiol. 41:89399
    [Google Scholar]
  37. 37.
    Gibson QH, Olson JS, McKinnie RE et al. 1986. A kinetic description of ligand binding to sperm whale myoglobin. J. Biol. Chem. 261:1022839
    [Google Scholar]
  38. 38.
    Dewilde S, Kiger L, Burmester T et al. 2001. Biochemical characterization and ligand binding properties of neuroglobin, a novel member of the globin family. J. Biol. Chem. 276:3894955
    [Google Scholar]
  39. 39.
    Trent JT 3rd, Hargrove MS. 2002. A ubiquitously expressed human hexacoordinate hemoglobin. J. Biol. Chem. 277:1953845
    [Google Scholar]
  40. 40.
    Burmester T, Hankeln T. 2014. Function and evolution of vertebrate globins. Acta Physiol. 211:50114
    [Google Scholar]
  41. 41.
    Mao Q, Kawaguchi AT, Mizobata S et al. 2021. Sensitive quantification of carbon monoxide in vivo reveals a protective role of circulating hemoglobin in CO intoxication. Comm. Biol. 4:425
    [Google Scholar]
  42. 42.
    Gibson QH, Greenwood C. 1963. Reactions of cytochrome oxidase with oxygen and carbon monoxide. Biochem. J. 86:54154
    [Google Scholar]
  43. 43.
    Pannala VR, Camara AKS, Dash RK. 2016. Modeling the detailed kinetics of mitochondrial cytochrome c oxidase: catalytic mechanism and nitric oxide inhibition. J. Appl. Physiol. 121:1196207
    [Google Scholar]
  44. 44.
    Goldbaum L, Orellano T, Dergal E. 1976. Mechanism of the toxic action of carbon monoxide. Ann. Clin. Lab. Sci. 6:37276
    [Google Scholar]
  45. 45.
    Brown SD, Piantadosi CA. 1990. In vivo binding of carbon monoxide to cytochrome c oxidase in rat brain. J. Appl. Physiol. 68:60410
    [Google Scholar]
  46. 46.
    Akyol S, Erdogan S, Idiz N et al. 2014. The role of reactive oxygen species and oxidative stress in carbon monoxide toxicity: an in-depth analysis. Redox Rep. 19:18089
    [Google Scholar]
  47. 47.
    Levitt DG, Levitt MD. 2015. Carbon monoxide: a critical quantitative analysis and review of the extent and limitations of its second messenger function. Clin. Pharmacol. 7:3756
    [Google Scholar]
  48. 48.
    Nañagas KA, Penfound SJ, Kao LW. 2022. Carbon monoxide toxicity. Emerg. Med. Clin. North Am. 40:283312
    [Google Scholar]
  49. 49.
    Miró Ò, Casademont J, Barrientos A et al. 1998. Mitochondrial cytochrome c oxidase inhibition during acute carbon monoxide poisoning. Pharmacol. Toxicol. 82:199202
    [Google Scholar]
  50. 50.
    Guo D, Hu H, Pan S. 2020. Oligodendrocyte dysfunction and regeneration failure: a novel hypothesis of delayed encephalopathy after carbon monoxide poisoning. Med. Hypotheses 136:109522
    [Google Scholar]
  51. 51.
    Cronje FJ, Carraway MS, Freiberger JJ et al. 2004. Carbon monoxide actuates O2-limited heme degradation in the rat brain. Free Radic. Biol. Med. 37:180212
    [Google Scholar]
  52. 52.
    Thom SR, Kang M, Fisher D et al. 1997. Release of glutathione from erythrocytes and other markers of oxidative stress in carbon monoxide poisoning. J. Appl. Physiol. 82:142432
    [Google Scholar]
  53. 53.
    Thom SR, Ohnishi ST, Ischiropoulos H. 1994. Nitric oxide released by platelets inhibits neutrophil B2 integrin function following acute carbon monoxide poisoning. Toxicol. Appl. Pharmacol. 128:10510
    [Google Scholar]
  54. 54.
    Ischiropoulos H, Beers MF, Ohnishi ST et al. 1996. Nitric oxide production and perivascular nitration in brain after carbon monoxide poisoning in the rat. J. Clin. Investig. 97:226067
    [Google Scholar]
  55. 55.
    Thom SR, Xu YA, Ischiropoulos H. 1997. Vascular endothelial cells generate peroxynitrite in response to carbon monoxide exposure. Chem. Res. Toxicol. 10:102331
    [Google Scholar]
  56. 56.
    Wang P, Zeng T, Zhang C-L et al. 2009. Lipid peroxidation was involved in the memory impairment of carbon monoxide-induced delayed neuron damage. Neurochem. Res. 34:129398
    [Google Scholar]
  57. 57.
    Thom SR, Fisher D, Manevich Y. 2001. Roles for platelet-activating factor and NO-derived oxidants causing neutrophil adherence after CO poisoning. Am. J. Physiol. Heart Circ. Physiol. 281:H92330
    [Google Scholar]
  58. 58.
    Thom SR, Bhopale VM, Han S-T et al. 2006. Intravascular neutrophil activation due to carbon monoxide poisoning. Am. J. Respir. Crit. Care Med. 174:123948
    [Google Scholar]
  59. 59.
    Piantadosi CA, Zhang J, Levin ED et al. 1997. Apoptosis and delayed neuronal damage after carbon monoxide poisoning in the rat. Exp. Neurol. 147:10314
    [Google Scholar]
  60. 60.
    Dong G, Ren M, Wang X et al. 2015. Allopurinol reduces severity of delayed neurologic sequelae in experimental carbon monoxide toxicity in rats. Neurotoxicology 48:17179
    [Google Scholar]
  61. 61.
    Hara S, Kobayashi M, Kuriiwa F et al. 2018. Hydroxyl radical production via NADPH oxidase in rat striatum due to carbon monoxide poisoning. Toxicology 394:6371
    [Google Scholar]
  62. 62.
    Angelova PR, Myers I, Abramov AY. 2023. Carbon monoxide neurotoxicity is triggered by oxidative stress induced by ROS production from three distinct cellular sources. Redox Biol. 60:102598
    [Google Scholar]
  63. 63.
    Thom SR, Bhopale VM, Fisher D et al. 2004. Delayed neuropathology after carbon monoxide poisoning is immune-mediated. PNAS 101:1366065
    [Google Scholar]
  64. 64.
    McCunn M, Reynolds HN, Cottingham CA et al. 2000. Extracorporeal support in an adult with severe carbon monoxide poisoning and shock following smoke inhalation: a case report. Perfusion 15:16973
    [Google Scholar]
  65. 65.
    Baran DA, Stelling K, McQueen D et al. 2020. Pediatric veno-veno extracorporeal membrane oxygenation rescue from carbon monoxide poisoning. Pediatr. Emerg. Care 36:e59294
    [Google Scholar]
  66. 66.
    Steuer NB, Schlanstein PC, Hannig A et al. 2022. Extracorporeal hyperoxygenation therapy (EHT) for carbon monoxide poisoning: in-vitro proof of principle. Membranes 12:56
    [Google Scholar]
  67. 67.
    Yu D, Xiaolin Z, Lei P et al. 2021. Extracorporeal membrane oxygenation for acute toxic inhalations: case reports and literature review. Front. Med. 8:745555
    [Google Scholar]
  68. 68.
    Zazzeron L, Liu C, Franco W et al. 2015. Pulmonary phototherapy for treating carbon monoxide poisoning. Am. J. Respir. Crit. Care Med. 192:119199
    [Google Scholar]
  69. 69.
    Zazzeron L, Fischbach A, Franco W et al. 2019. Phototherapy and extracorporeal membrane oxygenation facilitate removal of carbon monoxide in rats. Sci. Transl. Med. 11:eaau4217
    [Google Scholar]
  70. 70.
    Atalay H, Aybek H, Koseoglu M et al. 2006. The effects of amifostine and dexamethasone on brain tissue lipid peroxidation during oxygen treatment of carbon monoxide-poisoned rats. Adv. Ther. 23:33241
    [Google Scholar]
  71. 71.
    Jang DH, Piel S, Greenwood JC et al. 2021. Emerging cellular-based therapies in carbon monoxide poisoning. Am. J. Physiol. Cell Physiol. 321:C26975
    [Google Scholar]
  72. 72.
    Roderique JD, Josef CS, Newcomb AH et al. 2015. Preclinical evaluation of injectable reduced hydroxocobalamin as an antidote to acute carbon monoxide poisoning. J. Trauma Acute Care Surg. 79:S11620
    [Google Scholar]
  73. 73.
    Kitagishi H, Negi S, Kiriyama A et al. 2010. A diatomic molecule receptor that removes CO in a living organism. Angew. Chem. Int. Ed. 49:131215
    [Google Scholar]
  74. 74.
    Azarov I, Wang L, Rose JJ et al. 2016. Five-coordinate H64Q neuroglobin as a ligand-trap antidote for carbon monoxide poisoning. Sci. Transl. Med. 8:368ra173
    [Google Scholar]
  75. 75.
    Xu Q, Rose JJ, Chen X et al. 2022. Cell-free and alkylated hemoproteins improve survival in mouse models of carbon monoxide poisoning. JCI Insight 7:e153296
    [Google Scholar]
  76. 76.
    Droege DG, Johnstone TC. 2022. A water-soluble iron-porphyrin complex capable of rescuing CO-poisoned red blood cells. Chem. Commun. 58:272225
    [Google Scholar]
  77. 77.
    Mao Q, Zhao X, Kiriyama A et al. 2023. A synthetic porphyrin as an effective dual antidote against carbon monoxide and cyanide poisoning. PNAS 120:e2209924120
    [Google Scholar]
  78. 78.
    Figueiredo RT, Fernandez PL, Mourao-Sa DS et al. 2007. Characterization of heme as activator of Toll-like receptor 4. J. Biol. Chem. 282:2022129
    [Google Scholar]
  79. 79.
    Marques HM. 2007. Insights into porphyrin chemistry provided by the microperoxidases, the haempeptides derived from cytochrome c. Dalton Trans. 2007:437185
    [Google Scholar]
  80. 80.
    Gladwin MT, Tejero J. 2021. Use of microperoxidases for the treatment of carboxyhemoglobinemia US Patent 10,980,864B2
  81. 81.
    Rose JJ, Bocian KA, Xu Q et al. 2020. A neuroglobin-based high-affinity ligand trap reverses carbon monoxide-induced mitochondrial poisoning. J. Biol. Chem. 295:635771
    [Google Scholar]
  82. 82.
    Chen S-F, Liu X-C, Xu J-K et al. 2021. Conversion of human neuroglobin into a multifunctional peroxidase by rational design. Inorg. Chem. 60:283945
    [Google Scholar]
  83. 83.
    Benesch R, Benesch RE. 1967. The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin. Biochem. Biophys. Res. Commun. 26:16267
    [Google Scholar]
  84. 84.
    Khan I, Dantsker D, Samuni U et al. 2001. β93 Modified hemoglobin: kinetic and conformational consequences. Biochemistry 40:758192
    [Google Scholar]
  85. 85.
    Cheng Y, Shen T-J, Simplaceanu V et al. 2002. Ligand binding properties and structural studies of recombinant and chemically modified hemoglobins altered at β93 cysteine. Biochemistry 41:1190113
    [Google Scholar]
  86. 86.
    Doherty DH, Doyle MP, Curry SR et al. 1998. Rate of reaction with nitric oxide determines the hypertensive effect of cell-free hemoglobin. Nat. Biotechnol. 16:67276
    [Google Scholar]
  87. 87.
    Collman JP, Gagne RR, Halbert TR et al. 1973. Reversible oxygen adduct formation in ferrous complexes derived from a picket fence porphyrin. Model for oxymyoglobin. J. Am. Chem. Soc. 95:786870
    [Google Scholar]
  88. 88.
    Kano K, Kitagishi H, Kodera M et al. 2005. Dioxygen binding to a simple myoglobin model in aqueous solution. Angew. Chem. Int. Ed. 44:43538
    [Google Scholar]
  89. 89.
    Kano K, Kitagishi H, Dagallier C et al. 2006. Iron porphyrin−cyclodextrin supramolecular complex as a functional model of myoglobin in aqueous solution. Inorg. Chem. 45:444860
    [Google Scholar]
  90. 90.
    Kano K, Itoh Y, Kitagishi H et al. 2008. A supramolecular receptor of diatomic molecules (O2, CO, NO) in aqueous solution. J. Am. Chem. Soc. 130:800615
    [Google Scholar]
  91. 91.
    Jiang T, Sukumaran DK, Soni S-D et al. 1994. The synthesis and characterization of a pyridine-linked cyclodextrin dimer. J. Org. Chem. 59:514955
    [Google Scholar]
  92. 92.
    Zhou H, Groves JT. 2003. Hemodextrin: a self-assembled cyclodextrin–porphyrin construct that binds dioxygen. Biophys. Chem. 105:63948
    [Google Scholar]
  93. 93.
    Kaufmann P, Duffus BR, Teutloff C et al. 2018. Functional studies on Oligotropha carboxidovorans molybdenum–copper CO dehydrogenase produced in Escherichia coli. Biochemistry 57:2889901
    [Google Scholar]
  94. 94.
    Dent MR, Weaver BR, Roberts MG et al. 2023. Carbon monoxide-sensing transcription factors: regulators of microbial carbon monoxide oxidation pathway gene expression. J. Bacteriol. 205:e00332-22
    [Google Scholar]
  95. 95.
    Kerby RL, Youn H, Roberts GP. 2008. RcoM: a new single-component transcriptional regulator of CO metabolism in bacteria. J. Bacteriol. 190:333643
    [Google Scholar]
  96. 96.
    Kerby RL, Roberts GP. 2012. Burkholderia xenovorans RcoM(Bx)-1, a transcriptional regulator system for sensing low and persistent levels of carbon monoxide. J. Bacteriol. 194:580316
    [Google Scholar]
  97. 97.
    Dent MR, Roberts MG, Bowman HE et al. 2022. Quaternary structure and deoxyribonucleic acid-binding properties of the heme-dependent, CO-sensing transcriptional regulator PxRcoM. Biochemistry 61:67888
    [Google Scholar]
  98. 98.
    Salman M, Villamil Franco C, Ramodiharilafy R et al. 2019. Interaction of the full-length heme-based CO sensor protein RcoM-2 with ligands. Biochemistry 58:402834
    [Google Scholar]
  99. 99.
    Rose JJ, DeMartino AW, Tejero Bravo J et al. 2021. RcoM protein based carbon monoxide scavengers and preparations for the treatment of carbon monoxide poisoning World Patent 2021/231370A2
/content/journals/10.1146/annurev-med-052422-020045
Loading
/content/journals/10.1146/annurev-med-052422-020045
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error