1932

Abstract

The immune system is an incredibly complex biological network that plays a significant role in almost all disease pathogenesis. With an increased understanding of how this vital system operates, there has been a great emphasis on leveraging, manipulating, and/or supplementing endogenous immunity to better prevent or treat different disease states. More recently, the advent of nanotechnology has ushered in a plethora of new nanoparticle-based platforms that can be used to improve existing immunomodulation modalities. As the ability to engineer at the nanoscale becomes increasingly sophisticated, nanoparticles can be finely tuned to effect the desired immune responses, leading to exciting new avenues for addressing pressing issues in public health. In this review, we give an overview of the different areas in which nanoparticle technology has been applied toward modulating the immune system and highlight the recent advances within each.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-080615-034446
2016-06-07
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/7/1/annurev-chembioeng-080615-034446.html?itemId=/content/journals/10.1146/annurev-chembioeng-080615-034446&mimeType=html&fmt=ahah

Literature Cited

  1. Parkin J, Cohen B. 1.  2001. An overview of the immune system. Lancet 357:1777–89 [Google Scholar]
  2. Spellberg B, Edwards JE Jr. 2.  2001. Type 1/Type 2 immunity in infectious diseases. Clin. Infect. Dis. 32:76–102 [Google Scholar]
  3. Swann JB, Smyth MJ. 3.  2007. Immune surveillance of tumors. J. Clin. Investig. 117:1137–46 [Google Scholar]
  4. Davidson A, Diamond B. 4.  2001. Autoimmune diseases. N. Engl. J. Med. 345:340–50 [Google Scholar]
  5. Kaufmann SH. 5.  2007. The contribution of immunology to the rational design of novel antibacterial vaccines. Nat. Rev. Microbiol. 5:491–504 [Google Scholar]
  6. Rosenberg SA, Yang JC, Restifo NP. 6.  2004. Cancer immunotherapy: moving beyond current vaccines. Nat. Med. 10:909–15 [Google Scholar]
  7. Anderson RM, May RM. 7.  1982. Directly transmitted infections diseases: control by vaccination. Science 215:1053–60 [Google Scholar]
  8. Rosenblum MD, Gratz IK, Paw JS, Abbas AK. 8.  2012. Treating human autoimmunity: current practice and future prospects. Sci. Transl. Med. 4:125sr1 [Google Scholar]
  9. Riedel S. 9.  2005. Edward Jenner and the history of smallpox and vaccination. Bayl. Univ. Med. Cent. Proc. 18:21–25 [Google Scholar]
  10. Fenner F. 10.  1993. Smallpox: emergence, global spread, and eradication. Hist. Philos. Life Sci. 15:397–420 [Google Scholar]
  11. Rosato E, Pisarri S, Salsano F. 11.  2010. Current strategies for the treatment of autoimmune diseases. J. Biol. Regul. Homeost. Agents 24:251–59 [Google Scholar]
  12. Scheinecker C, Redlich K, Smolen JS. 12.  2008. Cytokines as therapeutic targets: advances and limitations. Immunity 28:440–44 [Google Scholar]
  13. Kim BY, Rutka JT, Chan WC. 13.  2010. Nanomedicine. N. Engl. J. Med. 363:2434–43 [Google Scholar]
  14. Wang AZ, Langer R, Farokhzad OC. 14.  2012. Nanoparticle delivery of cancer drugs. Annu. Rev. Med. 63:185–98 [Google Scholar]
  15. Shao K, Singha S, Clemente-Casares X, Tsai S, Yang Y, Santamaria P. 15.  2015. Nanoparticle-based immunotherapy for cancer. ACS Nano 9:16–30 [Google Scholar]
  16. Singh R, Lillard JW Jr. 16.  2009. Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 86:215–23 [Google Scholar]
  17. Medzhitov R, Janeway C Jr. 17.  2000. Innate immunity. N. Engl. J. Med. 343:338–44 [Google Scholar]
  18. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. 18.  2008. Functions of natural killer cells. Nat. Immunol. 9:503–10 [Google Scholar]
  19. Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S. 19.  2002. Antigen presentation and T cell stimulation by dendritic cells. Annu. Rev. Immunol. 20:621–67 [Google Scholar]
  20. Roche PA, Furuta K. 20.  2015. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat. Rev. Immunol. 15:203–16 [Google Scholar]
  21. Joffre OP, Segura E, Savina A, Amigorena S. 21.  2012. Cross-presentation by dendritic cells. Nat. Rev. Immunol. 12:557–69 [Google Scholar]
  22. Schatz DG, Oettinger MA, Schlissel MS. 22.  1992. V(D)J recombination: molecular biology and regulation. Annu. Rev. Immunol. 10:359–83 [Google Scholar]
  23. Treanor B. 23.  2012. B-cell receptor: from resting state to activate. Immunology 136:21–27 [Google Scholar]
  24. Luckheeram RV, Zhou R, Verma AD, Xia B. 24.  2012. CD4+ T cells: differentiation and functions. Clin. Dev. Immunol. 2012:925135 [Google Scholar]
  25. Pieper K, Grimbacher B, Eibel H. 25.  2013. B-cell biology and development. J. Allergy Clin. Immunol. 131:959–71 [Google Scholar]
  26. Joshi NS, Kaech SM. 26.  2008. Effector CD8 T cell development: a balancing act between memory cell potential and terminal differentiation. J. Immunol. 180:1309–15 [Google Scholar]
  27. Kalia V, Sarkar S, Gourley TS, Rouse BT, Ahmed R. 27.  2006. Differentiation of memory B and T cells. Curr. Opin. Immunol. 18:255–64 [Google Scholar]
  28. Dranoff G. 28.  2004. Cytokines in cancer pathogenesis and cancer therapy. Nat. Rev. Cancer 4:11–22 [Google Scholar]
  29. Le DT, Jaffee EM. 29.  2012. Regulatory T-cell modulation using cyclophosphamide in vaccine approaches: a current perspective. Cancer Res. 72:3439–44 [Google Scholar]
  30. Smith JM, Nemeth TL, McDonald RA. 30.  2003. Current immunosuppressive agents: efficacy, side effects, and utilization. Pediatr. Clin. North Am. 50:1283–300 [Google Scholar]
  31. Steinman L. 31.  2010. Inverse vaccination, the opposite of Jenner's concept, for therapy of autoimmunity. J. Intern. Med. 267:441–51 [Google Scholar]
  32. Cheever MA, Higano CS. 32.  2011. PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin. Cancer Res. 17:3520–26 [Google Scholar]
  33. O'Hagan DT, De Gregorio E. 33.  2009. The path to a successful vaccine adjuvant—‘the long and winding road.’. Drug Discov. Today 14:541–51 [Google Scholar]
  34. Barenholz Y. 34.  2012. Doxil®—the first FDA-approved nano-drug: lessons learned. J. Control. Release 160:117–34 [Google Scholar]
  35. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. 35.  2007. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2:751–60 [Google Scholar]
  36. Green MR, Manikhas GM, Orlov S, Afanasyev B, Makhson AM. 36.  et al. 2006. Abraxane, a novel Cremophor-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann. Oncol. 17:1263–68 [Google Scholar]
  37. Kim TY, Kim DW, Chung JY, Shin SG, Kim SC. 37.  et al. 2004. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin. Cancer Res. 10:3708–16 [Google Scholar]
  38. Iyer AK, Khaled G, Fang J, Maeda H. 38.  2006. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today 11:812–18 [Google Scholar]
  39. Fonseca C, Simoes S, Gaspar R. 39.  2002. Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J. Control. Release 83:273–86 [Google Scholar]
  40. Irvine DJ. 40.  2011. Drug delivery: one nanoparticle, one kill. Nat. Mater. 10:342–43 [Google Scholar]
  41. Hrkach J, Von Hoff D, Mukkaram Ali M, Andrianova E, Auer J. 41.  et al. 2012. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl. Med. 4:128ra39 [Google Scholar]
  42. Luk BT, Fang RH, Zhang L. 42.  2012. Lipid- and polymer-based nanostructures for cancer theranostics. Theranostics 2:1117–26 [Google Scholar]
  43. Irvine DJ, Hanson MC, Rakhra K, Tokatlian T. 43.  2015. Synthetic nanoparticles for vaccines and immunotherapy. Chem. Rev. 115:11109–46 [Google Scholar]
  44. Fang RH, Kroll AV, Zhang L. 44.  2015. Nanoparticle-based manipulation of antigen-presenting cells for cancer immunotherapy. Small 11:5483–96 [Google Scholar]
  45. Morton SW, Lee MJ, Deng ZJ, Dreaden EC, Siouve E. 45.  et al. 2014. A nanoparticle-based combination chemotherapy delivery system for enhanced tumor killing by dynamic rewiring of signaling pathways. Sci. Signal. 7:ra44 [Google Scholar]
  46. Albanese A, Tang PS, Chan WC. 46.  2012. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14:1–16 [Google Scholar]
  47. Reddy ST, van der Vlies AJ, Simeoni E, Angeli V, Randolph GJ. 47.  et al. 2007. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat. Biotechnol. 25:1159–64 [Google Scholar]
  48. Verma A, Stellacci F. 48.  2010. Effect of surface properties on nanoparticle-cell interactions. Small 6:12–21 [Google Scholar]
  49. Firdessa R, Oelschlaeger TA, Moll H. 49.  2014. Identification of multiple cellular uptake pathways of polystyrene nanoparticles and factors affecting the uptake: relevance for drug delivery systems. Eur. J. Cell Biol. 93:323–37 [Google Scholar]
  50. Gu L, Fang RH, Sailor MJ, Park JH. 50.  2012. In vivo clearance and toxicity of monodisperse iron oxide nanocrystals. ACS Nano 6:4947–54 [Google Scholar]
  51. Hu J, Zhang G, Liu S. 51.  2012. Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels. Chem. Soc. Rev. 41:5933–49 [Google Scholar]
  52. Gao W, Chan JM, Farokhzad OC. 52.  2010. pH-responsive nanoparticles for drug delivery. Mol. Pharm. 7:1913–20 [Google Scholar]
  53. Hu CM, Fang RH, Zhang L. 53.  2012. Erythrocyte-inspired delivery systems. Adv. Healthc. Mater. 1:537–47 [Google Scholar]
  54. Moon JJ, Suh H, Bershteyn A, Stephan MT, Liu H. 54.  et al. 2011. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nat. Mater. 10:243–51 [Google Scholar]
  55. Meyer RA, Sunshine JC, Perica K, Kosmides AK, Aje K. 55.  et al. 2015. Biodegradable nanoellipsoidal artificial antigen presenting cells for antigen specific T-cell activation. Small 11:1519–25 [Google Scholar]
  56. Toy R, Peiris PM, Ghaghada KB, Karathanasis E. 56.  2014. Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine 9:121–34 [Google Scholar]
  57. Anselmo AC, Zhang M, Kumar S, Vogus DR, Menegatti S. 57.  et al. 2015. Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting. ACS Nano 9:3169–77 [Google Scholar]
  58. Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. 58.  2012. Nanoparticles as drug delivery systems. Pharmacol. Rep. 64:1020–37 [Google Scholar]
  59. Pisal DS, Kosloski MP, Balu-Iyer SV. 59.  2010. Delivery of therapeutic proteins. J. Pharm. Sci. 99:2557–75 [Google Scholar]
  60. Fischer NO, Rasley A, Corzett M, Hwang MH, Hoeprich PD, Blanchette CD. 60.  2013. Colocalized delivery of adjuvant and antigen using nanolipoprotein particles enhances the immune response to recombinant antigens. J. Am. Chem. Soc. 135:2044–47 [Google Scholar]
  61. Aryal S, Hu CM, Zhang L. 61.  2011. Polymeric nanoparticles with precise ratiometric control over drug loading for combination therapy. Mol. Pharm. 8:1401–7 [Google Scholar]
  62. Fang RH, Luk BT, Hu CM, Zhang L. 62.  2015. Engineered nanoparticles mimicking cell membranes for toxin neutralization. Adv. Drug Deliv. Rev. 90:69–80 [Google Scholar]
  63. Harris JM, Chess RB. 63.  2003. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2:214–21 [Google Scholar]
  64. Pombo Garcia K, Zarschler K, Barbaro L, Barreto JA, O'Malley W. 64.  et al. 2014. Zwitterionic-coated “stealth” nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small 10:2516–29 [Google Scholar]
  65. Rodriguez PL, Harada T, Christian DA, Pantano DA, Tsai RK, Discher DE. 65.  2013. Minimal “self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339:971–75 [Google Scholar]
  66. Fang RH, Hu CM, Zhang L. 66.  2012. Nanoparticles disguised as red blood cells to evade the immune system. Expert Opin. Biol. Ther. 12:385–89 [Google Scholar]
  67. Sunshine JC, Green JJ. 67.  2013. Nanoengineering approaches to the design of artificial antigen-presenting cells. Nanomedicine 8:1173–89 [Google Scholar]
  68. Sperling RA, Parak WJ. 68.  2010. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos. Trans. A Math. Phys. Eng. Sci. 368:1333–83 [Google Scholar]
  69. Gu F, Zhang L, Teply BA, Mann N, Wang A. 69.  et al. 2008. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. PNAS 105:2586–91 [Google Scholar]
  70. Fang RH, Hu CM, Chen KN, Luk BT, Carpenter CW. 70.  et al. 2013. Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles. Nanoscale 5:8884–88 [Google Scholar]
  71. Hellstrom I, Hellstrom KE, Sjogren HO, Warner GA. 71.  1971. Demonstration of cell-mediated immunity to human neoplasms of various histological types. Int. J. Cancer 7:1–16 [Google Scholar]
  72. Schwartz RN, Stover L, Dutcher J. 72.  2002. Managing toxicities of high-dose interleukin-2. Oncology 16:11–20 [Google Scholar]
  73. Christian DA, Hunter CA. 73.  2012. Particle-mediated delivery of cytokines for immunotherapy. Immunotherapy 4:425–41 [Google Scholar]
  74. Anderson PM, Katsanis E, Sencer SF, Hasz D, Ochoa AC, Bostrom B. 74.  1992. Depot characteristics and biodistribution of interleukin-2 liposomes: importance of route of administration. J. Immunother. 12:19–31 [Google Scholar]
  75. Anderson PM, Katsanis E, Leonard AS, Schow D, Loeffler CM. 75.  et al. 1990. Increased local antitumor effects of interleukin 2 liposomes in mice with MCA-106 sarcoma pulmonary metastases. Cancer Res. 50:1853–56 [Google Scholar]
  76. Oya M. 76.  1994. Antitumor effect of interleukin-2 entrapped in liposomes on murine renal cell carcinoma. Keio J. Med. 43:37–44 [Google Scholar]
  77. Anderson PM, Hanson DC, Hasz DE, Halet MR, Blazar BR, Ochoa AC. 77.  1994. Cytokines in liposomes: preliminary studies with IL-1, IL-2, IL-6, GM-CSF and interferon-γ. Cytokine 6:92–101 [Google Scholar]
  78. Yao H, Ng SS, Huo LF, Chow BK, Shen Z. 78.  et al. 2011. Effective melanoma immunotherapy with interleukin-2 delivered by a novel polymeric nanoparticle. Mol. Cancer Ther. 10:1082–92 [Google Scholar]
  79. Mejías R, Pérez-Yagüe S, Gutiérrez L, Cabrera LI, Spada R. 79.  et al. 2011. Dimercaptosuccinic acid-coated magnetite nanoparticles for magnetically guided in vivo delivery of interferon gamma for cancer immunotherapy. Biomaterials 32:2938–52 [Google Scholar]
  80. Saxton ML, Longo DL, Wetzel HE, Tribble H, Alvord WG. 80.  et al. 1997. Adoptive transfer of anti-CD3-activated CD4+ T cells plus cyclophosphamide and liposome-encapsulated interleukin-2 cure murine MC-38 and 3LL tumors and establish tumor-specific immunity. Blood 89:2529–36 [Google Scholar]
  81. Cabanes A, Even-Chen S, Zimberoff J, Barenholz Y, Kedar E, Gabizon A. 81.  1999. Enhancement of antitumor activity of polyethylene glycol-coated liposomal doxorubicin with soluble and liposomal interleukin 2. Clin. Cancer Res. 5:687–93 [Google Scholar]
  82. Park J, Wrzesinski SH, Stern E, Look M, Criscione J. 82.  et al. 2012. Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat. Mater. 11:895–905 [Google Scholar]
  83. Pashine A, Valiante NM, Ulmer JB. 83.  2005. Targeting the innate immune response with improved vaccine adjuvants. Nat. Med. 11:S63–68 [Google Scholar]
  84. Hobohm U, Stanford JL, Grange JM. 84.  2008. Pathogen-associated molecular pattern in cancer immunotherapy. Crit. Rev. Immunol. 28:95–107 [Google Scholar]
  85. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S. 85.  et al. 2000. A Toll-like receptor recognizes bacterial DNA. Nature 408:740–45 [Google Scholar]
  86. Zwiorek K, Bourquin C, Battiany J, Winter G, Endres S. 86.  et al. 2008. Delivery by cationic gelatin nanoparticles strongly increases the immunostimulatory effects of CpG oligonucleotides. Pharm. Res. 25:551–62 [Google Scholar]
  87. de Jong S, Chikh G, Sekirov L, Raney S, Semple S. 87.  et al. 2007. Encapsulation in liposomal nanoparticles enhances the immunostimulatory, adjuvant and anti-tumor activity of subcutaneously administered CpG ODN. Cancer Immunol. Immunother. 56:1251–64 [Google Scholar]
  88. Molavi O, Mahmud A, Hamdy S, Hung RW, Lai R. 88.  et al. 2010. Development of a poly(d,l-lactic-co-glycolic acid) nanoparticle formulation of STAT3 inhibitor JSI-124: implication for cancer immunotherapy. Mol. Pharm. 7:364–74 [Google Scholar]
  89. Molavi O, Ma Z, Hamdy S, Lavasanifar A, Samuel J. 89.  2009. Immunomodulatory and anticancer effects of intra-tumoral co-delivery of synthetic lipid A adjuvant and STAT3 inhibitor, JSI-124. Immunopharmacol. Immunotoxicol. 31:214–21 [Google Scholar]
  90. Ding Y, Jiang Z, Saha K, Kim CS, Kim ST. 90.  et al. 2014. Gold nanoparticles for nucleic acid delivery. Mol. Ther. 22:1075–83 [Google Scholar]
  91. Radovic-Moreno AF, Chernyak N, Mader CC, Nallagatla S, Kang RS. 91.  et al. 2015. Immunomodulatory spherical nucleic acids. PNAS 112:3892–97 [Google Scholar]
  92. Lin AY, Almeida JP, Bear A, Liu N, Luo L. 92.  et al. 2013. Gold nanoparticle delivery of modified CpG stimulates macrophages and inhibits tumor growth for enhanced immunotherapy. PLOS ONE 8:e63550 [Google Scholar]
  93. Barnaby SN, Lee A, Mirkin CA. 93.  2014. Probing the inherent stability of siRNA immobilized on nanoparticle constructs. PNAS 111:9739–44 [Google Scholar]
  94. Iezzi R, Guru BR, Glybina IV, Mishra MK, Kennedy A, Kannan RM. 94.  2012. Dendrimer-based targeted intravitreal therapy for sustained attenuation of neuroinflammation in retinal degeneration. Biomaterials 33:979–88 [Google Scholar]
  95. Chan JM, Zhang L, Tong R, Ghosh D, Gao W. 95.  et al. 2010. Spatiotemporal controlled delivery of nanoparticles to injured vasculature. PNAS 107:2213–18 [Google Scholar]
  96. Wang Z, Li J, Cho J, Malik AB. 96.  2014. Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils. Nat. Nanotechnol. 9:204–10 [Google Scholar]
  97. Liu Y, Jiao F, Qiu Y, Li W, Qu Y. 97.  et al. 2009. Immunostimulatory properties and enhanced TNF-α mediated cellular immunity for tumor therapy by C60(OH)20 nanoparticles. Nanotechnology 20:415102 [Google Scholar]
  98. Zhu J, Ji Z, Wang J, Sun R, Zhang X. 98.  et al. 2008. Tumor-inhibitory effect and immunomodulatory activity of fullerol C60(OH)x. Small 4:1168–75 [Google Scholar]
  99. Sharp FA, Ruane D, Claass B, Creagh E, Harris J. 99.  et al. 2009. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. PNAS 106:870–75 [Google Scholar]
  100. Lizotte PH, Wen AM, Sheen MR, Fields J, Rojanasopondist P. 100.  et al. 2015. In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nat. Nanotechnol. 11:295–303 [Google Scholar]
  101. Tsai CY, Lu SL, Hu CW, Yeh CS, Lee GB, Lei HY. 101.  2012. Size-dependent attenuation of TLR9 signaling by gold nanoparticles in macrophages. J. Immunol. 188:68–76 [Google Scholar]
  102. Getts DR, Terry RL, Getts MT, Deffrasnes C, Müller M. 102.  et al. 2014. Therapeutic inflammatory monocyte modulation using immune-modifying microparticles. Sci. Transl. Med. 6:219ra7 [Google Scholar]
  103. Kudrin A. 103.  2012. Overview of cancer vaccines: considerations for development. Hum. Vaccin. Immunother. 8:1335–53 [Google Scholar]
  104. 104. RTSS Clin. Trials Partnersh. 2015. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet 386:31–45 [Google Scholar]
  105. Moon JJ, Suh H, Li AV, Ockenhouse CF, Yadava A, Irvine DJ. 105.  2012. Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that expand Tfh cells and promote germinal center induction. PNAS 109:1080–85 [Google Scholar]
  106. Li AV, Moon JJ, Abraham W, Suh H, Elkhader J. 106.  et al. 2013. Generation of effector memory T cell-based mucosal and systemic immunity with pulmonary nanoparticle vaccination. Sci. Transl. Med. 5:204ra130 [Google Scholar]
  107. Drake JW. 107.  1993. Rates of spontaneous mutation among RNA viruses. PNAS 90:4171–75 [Google Scholar]
  108. Yassine HM, Boyington JC, McTamney PM, Wei CJ, Kanekiyo M. 108.  et al. 2015. Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection. Nat. Med. 21:1065–70 [Google Scholar]
  109. Parker MW, Feil SC. 109.  2005. Pore-forming protein toxins: from structure to function. Prog. Biophys. Mol. Biol. 88:91–142 [Google Scholar]
  110. Guerrant RL, Steiner TS, Lima AA, Bobak DA. 110.  1999. How intestinal bacteria cause disease. J. Infect. Dis. 179:Suppl. 2S331–37 [Google Scholar]
  111. Cegelski L, Marshall GR, Eldridge GR, Hultgren SJ. 111.  2008. The biology and future prospects of antivirulence therapies. Nat. Rev. Microbiol. 6:17–27 [Google Scholar]
  112. Mellbye B, Schuster M. 112.  2011. The sociomicrobiology of antivirulence drug resistance: a proof of concept. mBio 2:e00131–11 [Google Scholar]
  113. Hu CM, Fang RH, Luk BT, Zhang L. 113.  2013. Nanoparticle-detained toxins for safe and effective vaccination. Nat. Nanotechnol. 8:933–38 [Google Scholar]
  114. Hu CM, Fang RH, Copp J, Luk BT, Zhang L. 114.  2013. A biomimetic nanosponge that absorbs pore-forming toxins. Nat. Nanotechnol. 8:336–40 [Google Scholar]
  115. Gao W, Fang RH, Thamphiwatana S, Luk BT, Li J. 115.  et al. 2015. Modulating antibacterial immunity via bacterial membrane-coated nanoparticles. Nano Lett. 15:1403–9 [Google Scholar]
  116. Pardoll DM. 116.  2012. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12:252–64 [Google Scholar]
  117. Tabi Z, Man S. 117.  2006. Challenges for cancer vaccine development. Adv. Drug Deliv. Rev. 58:902–15 [Google Scholar]
  118. Heo MB, Lim YT. 118.  2014. Programmed nanoparticles for combined immunomodulation, antigen presentation and tracking of immunotherapeutic cells. Biomaterials 35:590–600 [Google Scholar]
  119. Almeida JP, Lin AY, Figueroa ER, Foster AE, Drezek RA. 119.  2015. In vivo gold nanoparticle delivery of peptide vaccine induces anti-tumor immune response in prophylactic and therapeutic tumor models. Small 11:1453–59 [Google Scholar]
  120. Xu Z, Ramishetti S, Tseng YC, Guo S, Wang Y, Huang L. 120.  2013. Multifunctional nanoparticles co-delivering Trp2 peptide and CpG adjuvant induce potent cytotoxic T-lymphocyte response against melanoma and its lung metastasis. J. Control. Release 172:259–65 [Google Scholar]
  121. Lee IH, Kwon HK, An S, Kim D, Kim S. 121.  et al. 2012. Imageable antigen-presenting gold nanoparticle vaccines for effective cancer immunotherapy in vivo. Angew. Chem. Int. Ed. Engl. 51:8800–5 [Google Scholar]
  122. Fang RH, Hu CM, Luk BT, Gao W, Copp JA. 122.  et al. 2014. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 14:2181–88 [Google Scholar]
  123. Yoshikawa T, Okada N, Oda A, Matsuo K, Matsuo K. 123.  et al. 2008. Development of amphiphilic γ-PGA-nanoparticle based tumor vaccine: potential of the nanoparticulate cytosolic protein delivery carrier. Biochem. Biophys. Res. Commun. 366:408–13 [Google Scholar]
  124. Riker A, Cormier J, Panelli M, Kammula U, Wang E. 124.  et al. 1999. Immune selection after antigen-specific immunotherapy of melanoma. Surgery 126:112–20 [Google Scholar]
  125. Lokhov PG, Balashova EE. 125.  2010. Cellular cancer vaccines: an update on the development of vaccines generated from cell surface antigens. J. Cancer 1:230–41 [Google Scholar]
  126. Jain RA. 126.  2000. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 21:2475–90 [Google Scholar]
  127. Vigneron N, Stroobant V, Van den Eynde BJ, van der Bruggen P. 127.  2013. Database of T cell-defined human tumor antigens: the 2013 update. Cancer Immun. 13:15 [Google Scholar]
  128. Rosalia RA, Cruz LJ, van Duikeren S, Tromp AT, Silva AL. 128.  et al. 2015. CD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent anti-tumor responses. Biomaterials 40:88–97 [Google Scholar]
  129. Maldonado RA, LaMothe RA, Ferrari JD, Zhang AH, Rossi RJ. 129.  et al. 2015. Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance. PNAS 112:E156–65 [Google Scholar]
  130. Yeste A, Nadeau M, Burns EJ, Weiner HL, Quintana FJ. 130.  2012. Nanoparticle-mediated codelivery of myelin antigen and a tolerogenic small molecule suppresses experimental autoimmune encephalomyelitis. PNAS 109:11270–75 [Google Scholar]
  131. Copp JA, Fang RH, Luk BT, Hu CM, Gao W. 131.  et al. 2014. Clearance of pathological antibodies using biomimetic nanoparticles. PNAS 111:13481–86 [Google Scholar]
  132. Singh KV, Kaur J, Varshney GC, Raje M, Suri CR. 132.  2004. Synthesis and characterization of hapten-protein conjugates for antibody production against small molecules. Bioconjug. Chem. 15:168–73 [Google Scholar]
  133. Fox BS, Kantak KM, Edwards MA, Black KM, Bollinger BK. 133.  et al. 1996. Efficacy of a therapeutic cocaine vaccine in rodent models. Nat. Med. 2:1129–32 [Google Scholar]
  134. Anton B, Leff P. 134.  2006. A novel bivalent morphine/heroin vaccine that prevents relapse to heroin addiction in rodents. Vaccine 24:3232–40 [Google Scholar]
  135. Ishii N, Fitrilawati F, Manna A, Akiyama H, Tamada Y, Tamada K. 135.  2008. Gold nanoparticles used as a carrier enhance production of anti-hapten IgG in rabbit: a study with azobenzene-dye as a hapten presented on the entire surface of gold nanoparticles. Biosci. Biotechnol. Biochem. 72:124–31 [Google Scholar]
  136. Maquieira A, Brun EM, Garcés-Garcia M, Puchades R. 136.  2012. Aluminum oxide nanoparticles as carriers and adjuvants for eliciting antibodies from non-immunogenic haptens. Anal. Chem. 84:9340–48 [Google Scholar]
  137. Desai RI, Bergman J. 137.  2015. Effects of the nanoparticle-based vaccine, SEL-068, on nicotine discrimination in squirrel monkeys. Neuropsychopharmacology 40:2207–16 [Google Scholar]
  138. Eggermont LJ, Paulis LE, Tel J, Figdor CG. 138.  2014. Towards efficient cancer immunotherapy: advances in developing artificial antigen-presenting cells. Trends Biotechnol. 32:456–65 [Google Scholar]
  139. Smith-Garvin JE, Koretzky GA, Jordan MS. 139.  2009. T cell activation. Annu. Rev. Immunol. 27:591–619 [Google Scholar]
  140. Caserta S, Alessi P, Guarnerio J, Basso V, Mondino A. 140.  2008. Synthetic CD4+ T cell-targeted antigen-presenting cells elicit protective antitumor responses. Cancer Res. 68:3010–18 [Google Scholar]
  141. Turtle CJ, Riddell SR. 141.  2010. Artificial antigen-presenting cells for use in adoptive immunotherapy. Cancer J. 16:374–81 [Google Scholar]
  142. Ugel S, Zoso A, De Santo C, Li Y, Marigo I. 142.  et al. 2009. In vivo administration of artificial antigen-presenting cells activates low-avidity T cells for treatment of cancer. Cancer Res. 69:9376–84 [Google Scholar]
  143. Anderson HA, Hiltbold EM, Roche PA. 143.  2000. Concentration of MHC class II molecules in lipid rafts facilitates antigen presentation. Nat. Immunol. 1:156–62 [Google Scholar]
  144. Sunshine JC, Perica K, Schneck JP, Green JJ. 144.  2014. Particle shape dependence of CD8+ T cell activation by artificial antigen presenting cells. Biomaterials 35:269–77 [Google Scholar]
  145. Perica K, De Leon Medero A, Durai M, Chiu YL, Bieler JG. 145.  et al. 2014. Nanoscale artificial antigen presenting cells for T cell immunotherapy. Nanomedicine 10:119–29 [Google Scholar]
  146. Perica K, Tu A, Richter A, Bieler JG, Edidin M, Schneck JP. 146.  2014. Magnetic field-induced T cell receptor clustering by nanoparticles enhances T cell activation and stimulates antitumor activity. ACS Nano 8:2252–60 [Google Scholar]
  147. Perica K, Bieler JG, Schutz C, Varela JC, Douglass J. 147.  et al. 2015. Enrichment and expansion with nanoscale artificial antigen presenting cells for adoptive immunotherapy. ACS Nano 9:6861–71 [Google Scholar]
  148. Schutz C, Fleck M, Mackensen A, Zoso A, Halbritter D. 148.  et al. 2008. Killer artificial antigen-presenting cells: a novel strategy to delete specific T cells. Blood 111:3546–52 [Google Scholar]
  149. Shen C, He Y, Cheng K, Zhang D, Miao S. 149.  et al. 2011. Killer artificial antigen-presenting cells deplete alloantigen-specific T cells in a murine model of alloskin transplantation. Immunol. Lett. 138:144–55 [Google Scholar]
  150. Schutz C, Fleck M, Schneck JP, Oelke M. 150.  2014. Killer artificial antigen presenting cells (KaAPC) for efficient in vitro depletion of human antigen-specific T cells. J. Vis. Exp. 90:e51859 [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-080615-034446
Loading
/content/journals/10.1146/annurev-chembioeng-080615-034446
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error