1932

Abstract

Predicting which nonnative species become invasive is critical for their successful management, and Charles Darwin provided predictions based on species’ relatedness. However, Darwin provided two opposing predictions about the relatedness of introduced nonnatives to indigenous species. First, environmental fit is the dominant factor determining invader success; thus, we should expect that invasive species are closely related to local native residents. Alternatively, if competition is important, we should expect successful invaders are distantly related to the native residents. These opposing expectations are referred to as Darwin's naturalization conundrum. The results of studies that examine nonnative species relatedness to natives are largely inconsistent. This inconsistency arises from the fact that studies occur at different spatial and temporal scales, and at different stages of invasion, and so implicitly examine different mechanisms. Further, while species have evolved ecological differences, the mode and tempo of evolution can affect species’ differences, complicating the predictions from simple hypotheses. We outline unanswered questions and provide guidelines for collecting the data required to test competing hypotheses.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-042817-040339
2018-04-29
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/arplant/69/1/annurev-arplant-042817-040339.html?itemId=/content/journals/10.1146/annurev-arplant-042817-040339&mimeType=html&fmt=ahah

Literature Cited

  1. Adler PB, HilleRisLambers J, Levine JM. 1.  2007. A niche for neutrality. Ecol. Lett. 10:95–104 [Google Scholar]
  2. Allen CR, Nemec KT, Wardwell DA, Hoffman JD, Brust M. 2.  et al. 2013. Predictors of regional establishment success and spread of introduced non‐indigenous vertebrates. Glob. Ecol. Biogeogr. 22:889–99 [Google Scholar]
  3. Bennett JA, Stotz GC, Cahill JF. 3.  2014. Patterns of phylogenetic diversity are linked to invasion impacts, not invasion resistance, in a native grassland. J. Veg. Sci. 25:1315–26 [Google Scholar]
  4. Bennett JR, Elliott G, Mellish B, Joseph LN, Tulloch AIT. 4.  et al. 2014. Balancing phylogenetic diversity and species numbers in conservation prioritization, using a case study of threatened species in New Zealand. Biol. Conserv. 174:47–54 [Google Scholar]
  5. Bezeng BS, Savolainen V, Yessoufou K, Papadopulos AS, Maurin O, Van der Bank M. 5.  2013. A phylogenetic approach towards understanding the drivers of plant invasiveness on Robben Island, South Africa. Bot. J. Linn. Soc. 172:142–52 [Google Scholar]
  6. Bezeng SB, Davies JT, Yessoufou K, Maurin O, Van der Bank M. 6.  2015. Revisiting Darwin's naturalization conundrum: explaining invasion success of non‐native trees and shrubs in southern Africa. J. Ecol. 103:871–79 [Google Scholar]
  7. Blossey B, Notzold R. 7.  1995. Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. J. Ecol. 83:887–89 [Google Scholar]
  8. Brym ZT, Lake JK, Allen D, Ostling A. 8.  2011. Plant functional traits suggest novel ecological strategy for an invasive shrub in an understorey woody plant community. J. Appl. Ecol. 48:1098–106 [Google Scholar]
  9. Butler MA, King AA. 9.  2004. Phylogenetic comparative analysis: a modeling approach for adaptive evolution. Am. Nat. 164:683–95 [Google Scholar]
  10. Cadotte MW.10.  2006. Darwin to Elton: early ecology and the problem of invasive species. See Ref. 18 15–33
  11. Cadotte MW.11.  2014. Including distantly related taxa can bias phylogenetic tests. PNAS 111:E536 [Google Scholar]
  12. Cadotte MW, Albert CH, Walker SC. 12.  2013. The ecology of differences: integrating evolutionary and functional distances. Ecol. Lett. 16:1234–44 [Google Scholar]
  13. Cadotte MW, Borer ET, Seabloom EW, Cavender-Bares J, Harpole WS. 13.  et al. 2010. Phylogenetic patterns differ for native and exotic plant communities across a richness gradient in Northern California. Divers. Distrib. 16:892–901 [Google Scholar]
  14. Cadotte MW, Davies TJ. 14.  2016. Phylogenies in Ecology: A Guide to Concepts and Methods Princeton, NJ: Princeton Univ. Press
  15. Cadotte MW, Davies TJ, Peres-Neto PR. 15.  2017. Why phylogenies do not always predict ecological difference. Ecol. Monogr. 87:535–51 [Google Scholar]
  16. Cadotte MW, Hamilton MA, Murray BR. 16.  2009. Phylogenetic relatedness and plant invader success across two spatial scales. Divers. Distrib. 15:481–88 [Google Scholar]
  17. Cadotte MW, Jin LS. 17.  2014. All in the family: relatedness and the success of introduced species. Invasive Species in a Globalized World RP Keller, MW Cadotte, G Sandiford 147–62 Chicago: Univ. Chicago Press
  18. Cadotte MW, McMahon SM, Fukami T. 18.  2006. Conceptual Ecology and Invasion Biology: Reciprocal Approaches to Nature Dordrecht, Neth: Springer
  19. Cadotte MW, Tucker CM. 19.  2017. Should environmental filtering be abandoned?. Trends Ecol. Evol. 32:429–37 [Google Scholar]
  20. Carboni M, Muenkemueller T, Gallien L, Lavergne S, Acosta A, Thuiller W. 20.  2013. Darwin's naturalization hypothesis: Scale matters in coastal plant communities. Ecography 36:560–68 [Google Scholar]
  21. Carpenter D, Cappuccino N. 21.  2005. Herbivory, time since introduction and the invasiveness of exotic plants. J. Ecol. 93:315–21 [Google Scholar]
  22. Castro SA, Escobedo VM, Aranda J, Carvallo GO. 22.  2014. Evaluating Darwin's naturalization hypothesis in experimental plant assemblages: Phylogenetic relationships do not determine colonization success. PLOS ONE 9:e105535 [Google Scholar]
  23. Chesson P.23.  2000. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31:343–66 [Google Scholar]
  24. Clarke M, Thomas GH, Freckleton RP. 24.  2015. Trait evolution in adaptive radiations: modelling and measuring interspecific competition on phylogenies. bioRxiv 033647: https://doi.org/10.1101/033647 [Crossref] [Google Scholar]
  25. Colautti R, Parker JD, Cadotte MW, Pyšek P, Brown CS. 25.  et al. 2014. Quantifying the invasiveness of species. NeoBiota 21:7–27 [Google Scholar]
  26. Connell JH.26.  1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Dynamics of Populations: Proceedings of the Advanced Study Institute on ‘Dynamics of Numbers in Populations’ PJ den Boer, GR Gradwell 298–310 Wageningen, Neth: Cent. Agric. Publ. Doc
  27. Cudmore B, Jones LA, Mandrak NE, Dettmers JM, Chapman DC. 27.  et al. 2017. Ecological risk assessment of Grass carp (Ctenopharyngodon idella) for the Great Lakes basin Canadian Science Advisory Secretariat Central and Arctic Region Science Advisory Report, Fisheries and Oceans Canada, Ottawa, Ontario, Canada
  28. Daehler CC.28.  2001. Darwin's naturalization hypothesis revisited. Am. Nat. 158:324–30 [Google Scholar]
  29. Darwin CR.29.  1859. On the Origin of the Species by Means of Natural Selection London: Murray
  30. Davies KF, Cavender‐Bares J, Deacon N. 30.  2011. Native communities determine the identity of exotic invaders even at scales at which communities are unsaturated. Divers. Distrib. 17:35–42 [Google Scholar]
  31. Dawson W, Burslem DF, Hulme PE. 31.  2009. Factors explaining alien plant invasion success in a tropical ecosystem differ at each stage of invasion. J. Ecol. 97:657–65 [Google Scholar]
  32. de Candolle A. 32.  1855. Géographie Botanique Raisonnée Paris: Masson
  33. Diez JM, Sullivan JJ, Hulme PE, Edwards G, Duncan RP. 33.  2008. Darwin's naturalization conundrum: dissecting taxonomic patterns of species invasions. Ecol. Lett. 11:674–81 [Google Scholar]
  34. Diez JM, Williams PA, Randall RP, Sullivan JJ, Hulme PE, Duncan RP. 34.  2009. Learning from failures: testing broad taxonomic hypotheses about plant naturalization. Ecol. Lett. 12:1174–83 [Google Scholar]
  35. Drake JA, Mooney HA, di Castri F, Groves RH, Kruger FJ. 35.  et al., eds. 1989. Biological Invasions: A Global Perspective Chichester, UK: Wiley
  36. Duncan RP, Williams PA. 36.  2002. Ecology: Darwin's naturalization hypothesis challenged. Nature 417:608–9 [Google Scholar]
  37. Egerton FN.37.  1976. Ecological studies and observations before 1900. Issues and Ideas in America BJ Taylor, TJ White. 311–51 Norman: Univ. Okla. Press [Google Scholar]
  38. Ferreira RB, Beard KH, Peterson SL, Poessel SA, Callahan CM. 38.  2012. Establishment of introduced reptiles increases with the presence and richness of native congeners. Amphibia-Reptilia 33:387–92 [Google Scholar]
  39. Fleming JP, Dibble ED, Madsen JD, Wersal RM. 39.  2015. Investigation of Darwin's naturalization hypothesis in invaded macrophyte communities. Biol. Invasions 17:1519–31 [Google Scholar]
  40. França F, Louzada J, Korasaki V, Griffiths H, Silveira JM, Barlow J. 40.  2016. Do space-for-time assessments underestimate the impacts of logging on tropical biodiversity? An Amazonian case study using dung beetles. J. Appl. Ecol. 53:1098–105 [Google Scholar]
  41. Franks SJ, Pratt PD, Dray FA, Simms EL. 41.  2008. Selection on herbivory resistance and growth rate in an invasive plant. Am. Nat. 171:678–91 [Google Scholar]
  42. Franks SJ, Wheeler GS, Goodnight C. 42.  2012. Genetic variation and evolution of secondary compounds in native and introduced populations of the invasive plant Melaleuca quinquenervia. Evolution 66:1398–412 [Google Scholar]
  43. Fridley JD, Sax DF. 43.  2014. The imbalance of nature: revisiting a Darwinian framework for invasion biology. Glob. Ecol. Biogeogr. 23:1157–66 [Google Scholar]
  44. Gerhold P, Cahill JF, Winter M, Bartish IV, Prinzing A. 44.  2015. Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Funct. Ecol. 29:600–14 [Google Scholar]
  45. Godoy O, Kraft NJB, Levine JM. 45.  2014. Phylogenetic relatedness and the determinants of competitive outcomes. Ecol. Lett. 17:836–44 [Google Scholar]
  46. Hejda M, Pyšek P. 46.  2006. What is the impact of Impatiens glandulifera on species diversity of invaded riparian vegetation?. Biol. Conserv. 132:143–52 [Google Scholar]
  47. Holt RD.47.  1977. Predation, apparent competition, and structure of prey communities. Theor. Popul. Biol. 12:197–229 [Google Scholar]
  48. Howeth JG, Gantz CA, Angermeier PL, Frimprong EA, Hoff MH. 48.  et al. 2016. Predicting invasiveness of species in trade: climate match, trophic guild, and fecundity influence invasion success of nonnative freshwater fishes. Divers. Distrib. 22:148–60 [Google Scholar]
  49. Inderjit, Cadotte MW, Colautti RI. 49.  2005. The ecology of biological invasions: past, present and future. Invasive Plants: Ecological and Agricultural Aspects Inderjit 19–43 Basel, Switz: Birkhäuser [Google Scholar]
  50. Janzen DH.50.  1970. Herbivores and the number of tree species in tropical forests. Am. Nat. 104:501–28 [Google Scholar]
  51. Jiang L, Tan JQ, Pu ZC. 51.  2010. An experimental test of Darwin's naturalization hypothesis. Am. Nat. 175:415–23 [Google Scholar]
  52. Keane RM, Crawley MJ. 52.  2002. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17:164–70 [Google Scholar]
  53. Kolar CS, Lodge DM. 53.  2001. Progress in invasion biology: predicting invaders. Trends Ecol. Evol. 16:199–204 [Google Scholar]
  54. Kornfeld E.54.  1984. Crisis in the capital: the cultural significance of Philadelphia's great yellow fever epidemic. Pa. Hist. J. Mid-Atlantic Stud. 51:189–205 [Google Scholar]
  55. Kricsfalusy VV, Miller GC. 55.  2008. Invasion and distribution of Cynanchum rossicum (Asclepiadaceae) in the Toronto region, Canada, with remarks on its taxonomy. Thaiszia J. Bot. 18:21–36 [Google Scholar]
  56. Lambdon PW, Hulme PE. 56.  2006. How strongly do interactions with closely-related native species influence plant invasions? Darwin's naturalization hypothesis assessed on Mediterranean islands. J. Biogeogr. 33:1116–25 [Google Scholar]
  57. Lawton JH.57.  1999. Are there general laws in ecology?. Oikos 84:177–92 [Google Scholar]
  58. Lemoine NP, Shue J, Verrico B, Erickson D, Kress WJ, Parker JD. 58.  2015. Phylogenetic relatedness and leaf functional traits, not introduced status, influence community assembly. Ecology 96:2605–12 [Google Scholar]
  59. Leung B, Lodge DM, Finnoff D, Shogren JF, Lewis M, Lamberti G. 59.  2002. An ounce of prevention or a pound of cure: bioeconomic risk analysis of invasive species. Proc. R. Soc. B 269:2407–13 [Google Scholar]
  60. Levine JM, Bascompte J, Adler PB, Allesina S. 60.  2017. Beyond pairwise mechanisms of species coexistence in complex communities. Nature 546:56–64 [Google Scholar]
  61. Li SP, Cadotte MW, Meiners SJ, Hua ZS, Shu HY. 61.  et al. 2015. The effects of phylogenetic relatedness on invasion success and impact: deconstructing Darwin's naturalisation conundrum. Ecol. Lett. 18:1285–92 [Google Scholar]
  62. Li SP, Guo T, Cadotte MW, Chen YJ, Kuang JL. 62.  et al. 2015. Contrasting effects of phylogenetic relatedness on plant invader success in experimental grassland communities. J. Appl. Ecol. 52:89–99 [Google Scholar]
  63. Lim J, Crawley MJ, De Vere N, Rich T, Savolainen V. 63.  2014. A phylogenetic analysis of the British flora sheds light on the evolutionary and ecological factors driving plant invasions. Ecol. Evol. 4:4258–69 [Google Scholar]
  64. Lockwood JL, Simberloff D, McKinney ML, Von Holle B. 64.  2001. How many, and which, plants will invade natural areas?. Biol. Invasions 3:1–8 [Google Scholar]
  65. Lodge DM, Simonin PW, Burgiel SW, Keller RP, Bossenbroek JM. 65.  et al. 2016. Risk analysis and bioeconomics of invasive species to inform policy and management. Annu. Rev. Environ. Resour. 41:453–88 [Google Scholar]
  66. Lososová Z, de Bello F, Chytrý M, Kühn I, Pyšek P. 66.  et al. 2015. Alien plants invade more phylogenetically clustered community types and cause even stronger clustering. Glob. Ecol. Biogeogr. 24:786–94 [Google Scholar]
  67. Ma C, Li S-P, Pu Z, Tan J, Liu M. 67.  et al. 2016. Different effects of invader–native phylogenetic relatedness on invasion success and impact: a meta-analysis of Darwin's naturalization hypothesis. Proc. R. Soc. B 283:20160663 [Google Scholar]
  68. MacDougall AS, Gilbert B, Levine JM. 68.  2009. Plant invasions and the niche. J. Ecol. 97:609–15 [Google Scholar]
  69. Mack RN.69.  1996. Biotic barriers to plant naturalization. Proc. IX Int. Symp. Biol. Control Weeds, Jan. 19–26 VC Moran, JH Hoffman 39–46 Stellenbosch, S. Afr: Univ. Cape Town [Google Scholar]
  70. Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA. 70.  2000. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10:689–710 [Google Scholar]
  71. Maitner BS, Rudgers JA, Dunham AE, Whitney KD. 71.  2012. Patterns of bird invasion are consistent with environmental filtering. Ecography 35:614–23 [Google Scholar]
  72. Mandrak NE, Cudmore BC. 72.  2015. Risk assessment: cornerstone of an aquatic invasive species program. J. Aquat. Eco. Health Manag. 18:312–20 [Google Scholar]
  73. Marx HE, Giblin DE, Dunwiddie PW, Tank DC. 73.  2016. Deconstructing Darwin's Naturalization Conundrum in the San Juan Islands using community phylogenetics and functional traits. Divers. Distrib. 22:318–31 [Google Scholar]
  74. Mayfield MM, Levine JM. 74.  2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 13:1085–93 [Google Scholar]
  75. Narwani A, Alexandrou MA, Oakley TH, Carroll IT, Cardinale BJ. 75.  2013. Experimental evidence that evolutionary relatedness does not affect the ecological mechanisms of coexistence in freshwater green algae. Ecol. Lett. 16:1373–81 [Google Scholar]
  76. Nuismer SL, Harmon LJ. 76.  2015. Predicting rates of interspecific interaction from phylogenetic trees. Ecol. Lett. 18:17–27 [Google Scholar]
  77. Ordonez A.77.  2014. Functional and phylogenetic similarity of alien plants to co‐occurring natives. Ecology 95:1191–202 [Google Scholar]
  78. Park DS, Potter D. 78.  2013. A test of Darwin's naturalization hypothesis in the thistle tribe shows that close relatives make bad neighbors. PNAS 110:17915–20 [Google Scholar]
  79. Park DS, Potter D. 79.  2015. A reciprocal test of Darwin's naturalization hypothesis in two Mediterranean‐climate regions. Glob. Ecol. Biogeogr. 24:1049–58 [Google Scholar]
  80. Parker IM, Gilbert GS. 80.  2004. The evolutionary ecology of novel plant-pathogen interactions. Annu. Rev. Ecol. Evol. Syst. 35:675–700 [Google Scholar]
  81. Parker IM, Saunders M, Bontrager M, Weitz AP, Hendricks R. 81.  et al. 2015. Phylogenetic structure and host abundance drive disease pressure in communities. Nature 520:542–44 [Google Scholar]
  82. Parker JD, Burkepile DE, Lajeunesse MJ, Lind EM. 82.  2012. Phylogenetic isolation increases plant success despite increasing susceptibility to generalist herbivores. Divers. Distrib. 18:1–9 [Google Scholar]
  83. Peay KG, Belisle M, Fukami T. 83.  2012. Phylogenetic relatedness predicts priority effects in nectar yeast communities. Proc. R. Soc. B 279:749–58 [Google Scholar]
  84. Pellock S, Thompson A, He K, Mecklin C, Yang J. 84.  2013. Validity of Darwin's naturalization hypothesis relates to the stages of invasion. Community Ecol 14:172–79 [Google Scholar]
  85. Pimentel D, Lach L, Zuniga R, Morrison D. 85.  2000. Environmental and economic costs of nonindigenous species in the United States. BioScience 50:53–65 [Google Scholar]
  86. Pimentel D, Zuniga R, Morrison D. 86.  2005. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 52:273–88 [Google Scholar]
  87. Pysek P, Richardson DM, Williamson M. 87.  2004. Predicting and explaining plant invasions through analysis of source area floras: some critical considerations. Divers. Distrib. 10:179–87 [Google Scholar]
  88. Rejmánek M.88.  1996. A theory of seed plant invasiveness: the first sketch. Biol. Conserv. 78:171–81 [Google Scholar]
  89. Ricciardi A, Atkinson SK. 89.  2004. Distinctiveness magnifies the impact of biological invaders in aquatic ecosystems. Ecol. Lett. 7:781–84 [Google Scholar]
  90. Ricciardi A, Mottiar M. 90.  2006. Does Darwin's naturalization hypothesis explain fish invasions?. Biol. Invasions 8:1403–7 [Google Scholar]
  91. Richardson DM, Allsopp N, D'Antonio CM, Milton SJ, Rejmánek M. 91.  2000. Plant invasions—the role of mutualisms. Biol. Rev. 75:65–93 [Google Scholar]
  92. Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ. 92.  2000. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6:93–107 [Google Scholar]
  93. Ricotta C, Godefroid S, Rocchini D. 93.  2010. Invasiveness of alien plants in Brussels is related to their phylogenetic similarity to native species. Divers. Distrib. 16:655–62 [Google Scholar]
  94. Sax DF, Stachowicz JJ, Brown JH, Bruno JF, Dawson MN. 94.  et al. 2007. Ecological and evolutionary insights from species invasions. Trends Ecol. Evol. 22:465–71 [Google Scholar]
  95. Schaefer H, Hardy OJ, Silva L, Barraclough TG, Savolainen V. 95.  2011. Testing Darwin's naturalization hypothesis in the Azores. Ecol. Lett. 14:389–96 [Google Scholar]
  96. Seastedt T, Pyšek P. 96.  2011. Mechanisms of plant invasions of North American and European grasslands. Annu. Rev. Ecol. Evol. Syst. 42:133–53 [Google Scholar]
  97. Shea K, Chesson P. 97.  2002. Community ecology theory as a framework for biological invasions. Trends Ecol. Evol. 17:170–76 [Google Scholar]
  98. Simberloff D.98.  2004. Community ecology: Is it time to move on?. Am. Nat. 163:787–99 [Google Scholar]
  99. Skóra F, Abilhoa V, Padial AA, Vitule JRS. 99.  2015. Darwin's hypotheses to explain colonization trends: evidence from a quasi‐natural experiment and a new conceptual model. Divers. Distrib. 21:583–94 [Google Scholar]
  100. Strauss SY, Webb CO, Salamin N. 100.  2006. Exotic taxa less related to native species are more invasive. PNAS 103:5841–45 [Google Scholar]
  101. Strecker AL, Olden JD. 101.  2014. Fish species introductions provide novel insights into the patterns and drivers of phylogenetic structure in freshwaters. Proc. R. Soc. B 281:20133003 [Google Scholar]
  102. Tan J, Pu Z, Ryberg WA, Jiang L. 102.  2015. Resident-invader phylogenetic relatedness, not resident phylogenetic diversity, controls community invasibility. Am. Nat. 186:59–71 [Google Scholar]
  103. Thuiller W, Gallien L, Boulangeat I, De Bello F, Münkemüller T. 103.  et al. 2010. Resolving Darwin's naturalization conundrum: a quest for evidence. Divers. Distrib. 16:461–75 [Google Scholar]
  104. Tingley R, Phillips BL, Shine R. 104.  2011. Establishment success of introduced amphibians increases in the presence of congeneric species. Am. Nat. 177:382–88 [Google Scholar]
  105. Tucker CM, Cadotte MW, Carvalho SB, Davies TJ, Ferrier S. 105.  et al. 2016. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. 92:698–715 [Google Scholar]
  106. Van Wilgen NJ, Richardson DM. 106.  2011. Is phylogenetic relatedness to native species important for the establishment of reptiles introduced to California and Florida?. Divers. Distrib. 17:172–81 [Google Scholar]
  107. Venail PA, Narwani A, Fritschie K, Alexandrou MA, Oakley TH, Cardinale BJ. 107.  2014. The influence of phylogenetic relatedness on species interactions among freshwater green algae in a mesocosm experiment. J. Ecol. 102:1288–99 [Google Scholar]
  108. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. 108.  2002. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33:475–505 [Google Scholar]
  109. Wu SH, Hsieh CF, Chaw SM, Rejmánek M. 109.  2004. Plant invasions in Taiwan: insights from the flora of casual and naturalized alien species. Divers. Distrib. 10:349–62 [Google Scholar]
/content/journals/10.1146/annurev-arplant-042817-040339
Loading
/content/journals/10.1146/annurev-arplant-042817-040339
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error