skip to main content
10.1145/3564246.3585112acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

Approximate Graph Colouring and the Hollow Shadow

Published:02 June 2023Publication History

ABSTRACT

We show that approximate graph colouring is not solved by constantly many levels of the lift-and-project hierarchy for the combined basic linear programming and affine integer programming relaxation. The proof involves a construction of tensors whose fixed-dimensional projections are equal up to reflection and satisfy a sparsity condition, which may be of independent interest.

References

  1. Richard P Anstee. 1982. Properties of a class of (0, 1)-matrices covering a given matrix. Canadian Journal of Mathematics, 34, 2 (1982), 438–453. https://doi.org/10.4153/CJM-1982-029-3 Google ScholarGoogle ScholarCross RefCross Ref
  2. Sanjeev Arora, Béla Bollobás, László Lovász, and Iannis Tourlakis. 2006. Proving Integrality Gaps without Knowing the Linear Program. Theory Comput., 2, 2 (2006), 19–51. https://doi.org/10.4086/toc.2006.v002a002 Google ScholarGoogle ScholarCross RefCross Ref
  3. Kristina Asimi and Libor Barto. 2021. Finitely Tractable Promise Constraint Satisfaction Problems. In Proc. 46th International Symposium on Mathematical Foundations of Computer Science (MFCS’21) (LIPIcs, Vol. 202). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 11:1–11:16. https://doi.org/10.4230/LIPIcs.MFCS.2021.11 Google ScholarGoogle ScholarCross RefCross Ref
  4. Albert Atserias and Víctor Dalmau. 2022. Promise Constraint Satisfaction and Width. In Proc. 2022 ACM-SIAM Symposium on Discrete Algorithms (SODA’22). 1129–1153. https://doi.org/10.1137/1.9781611977073.48 arXiv:2107.05886. Google ScholarGoogle ScholarCross RefCross Ref
  5. Per Austrin, Venkatesan Guruswami, and Johan Håstad. 2017. (2+∊ )-Sat Is NP-hard. SIAM J. Comput., 46, 5 (2017), 1554–1573. https://doi.org/10.1137/15M1006507 eccc:2013/159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Libor Barto. 2016. The collapse of the bounded width hierarchy. J. Log. Comput., 26, 3 (2016), 923–943. https://doi.org/10.1093/logcom/exu070 Google ScholarGoogle ScholarCross RefCross Ref
  7. Libor Barto, Diego Battistelli, and Kevin M. Berg. 2021. Symmetric Promise Constraint Satisfaction Problems: Beyond the Boolean Case. In Proc. 38th International Symposium on Theoretical Aspects of Computer Science (STACS’21) (LIPIcs, Vol. 187). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 10:1–10:16. https://doi.org/10.4230/LIPIcs.STACS.2021.10 arXiv:2010.04623. Google ScholarGoogle ScholarCross RefCross Ref
  8. Libor Barto, Jakub Bulín, Andrei A. Krokhin, and Jakub Opršal. 2021. Algebraic approach to promise constraint satisfaction. J. ACM, 68, 4 (2021), 28:1–28:66. https://doi.org/10.1145/3457606 arXiv:1811.00970. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Libor Barto and Marcin Kozik. 2014. Constraint Satisfaction Problems Solvable by Local Consistency Methods. J. ACM, 61, 1 (2014), https://doi.org/10.1145/2556646 Article No. 3 Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Libor Barto and Marcin Kozik. 2022. Combinatorial Gap Theorem and Reductions between Promise CSPs. In Proc. 2022 ACM-SIAM Symposium on Discrete Algorithms (SODA’22). 1204–1220. https://doi.org/10.1137/1.9781611977073.50 arXiv:2107.09423. Google ScholarGoogle ScholarCross RefCross Ref
  11. Christoph Berkholz and Martin Grohe. 2017. Linear Diophantine Equations, Group CSPs, and Graph Isomorphism. In Proc. 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’17). SIAM, 327–339. https://doi.org/10.1137/1.9781611974782.21 arXiv:1607.04287. Google ScholarGoogle ScholarCross RefCross Ref
  12. Amey Bhangale and Subhash Khot. 2021. Optimal Inapproximability of Satisfiable k-LIN over Non-Abelian Groups. In Proc. 53rd Annual ACM Symposium on Theory of Computing (STOC’21). ACM, 1615–1628. https://doi.org/10.1145/3406325.3451003 arXiv:2009.02815. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Amey Bhangale, Subhash Khot, and Don Minzer. 2022. On Inapproximability of Satisfiable k-CSPs: I.. In Proc. 54th Annual ACM Symposium on Theory of Computing (STOC’22). ACM, 976–988. https://doi.org/10.1145/3519935.3520028 Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Joshua Brakensiek and Venkatesan Guruswami. 2016. New Hardness Results for Graph and Hypergraph Colorings. In Proc. 31st Conference on Computational Complexity (CCC’16) (LIPIcs, Vol. 50). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 14:1–14:27. https://doi.org/10.4230/LIPIcs.CCC.2016.14 Google ScholarGoogle ScholarCross RefCross Ref
  15. Joshua Brakensiek and Venkatesan Guruswami. 2019. An Algorithmic Blend of LPs and Ring Equations for Promise CSPs. In Proc. 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’19). 436–455. https://doi.org/10.1137/1.9781611975482.28 arXiv:1807.05194. Google ScholarGoogle ScholarCross RefCross Ref
  16. Joshua Brakensiek and Venkatesan Guruswami. 2021. Promise Constraint Satisfaction: Algebraic Structure and a Symmetric Boolean Dichotomy. SIAM J. Comput., 50, 6 (2021), 1663–1700. https://doi.org/10.1137/19M128212X arXiv:1704.01937. Google ScholarGoogle ScholarCross RefCross Ref
  17. Joshua Brakensiek, Venkatesan Guruswami, and Sai Sandeep. 2021. Conditional Dichotomy of Boolean Ordered Promise CSPs. In Proc. 48th International Colloquium on Automata, Languages, and Programming (ICALP’21) (LIPIcs, Vol. 198). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 37:1–37:15. https://doi.org/10.4230/LIPIcs.ICALP.2021.37 arXiv:2102.11854. Google ScholarGoogle ScholarCross RefCross Ref
  18. Joshua Brakensiek, Venkatesan Guruswami, Marcin Wrochna, and Stanislav Živný. 2020. The power of the combined basic LP and affine relaxation for promise CSPs. SIAM J. Comput., 49 (2020), 1232–1248. https://doi.org/10.1137/20M1312745 arXiv:1907.04383. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Alex Brandts, Marcin Wrochna, and Stanislav Živný. 2021. The complexity of promise SAT on non-Boolean domains. ACM Trans. Comput. Theory, 13, 4 (2021), 26:1–26:20. https://doi.org/10.1145/3470867 arXiv:1911.09065. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Gábor Braun, Sebastian Pokutta, and Daniel Zink. 2015. Inapproximability of Combinatorial Problems via Small LPs and SDPs. In Proc. 47th Annual ACM on Symposium on Theory of Computing (STOC’15). ACM, 107–116. https://doi.org/10.1145/2746539.2746550 Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Mark Braverman, Subhash Khot, Noam Lifshitz, and Dor Minzer. 2021. An Invariance Principle for the Multi-slice, with Applications. In Proc. 62nd IEEE Annual Symposium on Foundations of Computer Science (FOCS’21). IEEE, 228–236. https://doi.org/10.1109/FOCS52979.2021.00030 Google ScholarGoogle ScholarCross RefCross Ref
  22. Mark Braverman, Subhash Khot, and Dor Minzer. 2021. On Rich 2-to-1 Games. In Proc. 12th Innovations in Theoretical Computer Science Conference (ITCS’21) (LIPIcs, Vol. 185). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 27:1–27:20. https://doi.org/10.4230/LIPIcs.ITCS.2021.27 Google ScholarGoogle ScholarCross RefCross Ref
  23. Richard A. Brualdi and Geir Dahl. 2003. Matrices of zeros and ones with given line sums and a zero block. Linear Algebra Appl., 371 (2003), 191–207. issn:0024-3795 https://doi.org/10.1016/S0024-3795(03)00429-4 Google ScholarGoogle ScholarCross RefCross Ref
  24. R. A. Brualdi and G. Dahl. 2007. Constructing (0,1)-matrices with given line sums and certain fixed zeros. In Advances in discrete tomography and its applications. Birkhäuser Boston, Boston, MA, 113–123. https://doi.org/10.1007/978-0-8176-4543-4_6 Google ScholarGoogle ScholarCross RefCross Ref
  25. Andrei A. Bulatov. 2017. A Dichotomy Theorem for Nonuniform CSPs. In Proc. 58th Annual IEEE Symposium on Foundations of Computer Science (FOCS’17). 319–330. issn:0272-5428 https://doi.org/10.1109/FOCS.2017.37 arXiv:1703.03021. Google ScholarGoogle ScholarCross RefCross Ref
  26. Silvia Butti and Víctor Dalmau. 2021. Fractional Homomorphism, Weisfeiler-Leman Invariance, and the Sherali-Adams Hierarchy for the Constraint Satisfaction Problem. In Proc. 46th International Symposium on Mathematical Foundations of Computer Science (MFCS’21) (LIPIcs, Vol. 202). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 27:1–27:19. https://doi.org/10.4230/LIPIcs.MFCS.2021.27 arXiv:2107.02956. Google ScholarGoogle ScholarCross RefCross Ref
  27. Siu On Chan. 2016. Approximation Resistance from Pairwise-Independent Subgroups. J. ACM, 63, 3 (2016), 27:1–27:32. https://doi.org/10.1145/2873054 Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Siu On Chan, James R. Lee, Prasad Raghavendra, and David Steurer. 2016. Approximate Constraint Satisfaction Requires Large LP Relaxations. J. ACM, 63, 4 (2016), 34:1–34:22. https://doi.org/10.1145/2811255 Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Wei Chen, Yanfang Mo, Li Qiu, and Pravin Varaiya. 2016. Constrained (0,1)-matrix completion with a staircase of fixed zeros. Linear Algebra Appl., 510 (2016), 171–185. issn:0024-3795 https://doi.org/10.1016/j.laa.2016.08.020 Google ScholarGoogle ScholarCross RefCross Ref
  30. William Y. C. Chen. 1992. Integral matrices with given row and column sums. J. Combin. Theory Ser. A, 61, 2 (1992), 153–172. issn:0097-3165 https://doi.org/10.1016/0097-3165(92)90015-M Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Lorenzo Ciardo and Stanislav Živný. 2022. Approximate Graph Colouring and the Hollow Shadow. arXiv:2211.03168. Google ScholarGoogle Scholar
  32. Lorenzo Ciardo and Stanislav Živný. 2023. Approximate Graph Colouring and Crystals. In Proc. 2023 ACM-SIAM Symposium on Discrete Algorithms (SODA’23). 2256–2267. https://doi.org/10.1137/1.9781611977554.ch86 arXiv:2210.08293. Google ScholarGoogle ScholarCross RefCross Ref
  33. Lorenzo Ciardo and Stanislav Živný. 2023. CLAP: A New Algorithm for Promise CSPs. SIAM J. Comput., 52, 1 (2023), 1–37. https://doi.org/10.1137/22M1476435 arXiv:2107.05018. Google ScholarGoogle ScholarCross RefCross Ref
  34. Lorenzo Ciardo and Stanislav Živný. 2023. Hierarchies of minion tests for PCSPs through tensors. In Proc. 2023 ACM-SIAM Symposium on Discrete Algorithms (SODA’23). 568–580. https://doi.org/10.1137/1.9781611977554.ch25 arXiv:2207.02277. Google ScholarGoogle ScholarCross RefCross Ref
  35. Adam Ó Conghaile. 2022. Cohomology in Constraint Satisfaction and Structure Isomorphism. In Proc. 47th International Symposium on Mathematical Foundations of Computer Science (MFCS’22) (LIPIcs, Vol. 241). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 75:1–75:16. https://doi.org/10.4230/LIPIcs.MFCS.2022.75 arXiv:2206.15253. Google ScholarGoogle ScholarCross RefCross Ref
  36. Geir Dahl. 2008. Transportation matrices with staircase patterns and majorization. Linear Algebra Appl., 429, 7 (2008), 1840–1850. issn:0024-3795 https://doi.org/10.1016/j.laa.2008.05.019 Google ScholarGoogle ScholarCross RefCross Ref
  37. Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. 2018. On non-optimally expanding sets in Grassmann graphs. In Proc. 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC’18). ACM, 940–951. https://doi.org/10.1145/3188745.3188806 Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. 2018. Towards a proof of the 2-to-1 games conjecture? In Proc. 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC’18). ACM, 376–389. https://doi.org/10.1145/3188745.3188804 Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Irit Dinur, Elchanan Mossel, and Oded Regev. 2009. Conditional Hardness for Approximate Coloring. SIAM J. Comput., 39, 3 (2009), 843–873. https://doi.org/10.1137/07068062X Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Tomás Feder and Moshe Y. Vardi. 1998. The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory. SIAM J. Comput., 28, 1 (1998), 57–104. https://doi.org/10.1137/S0097539794266766 Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. D. R. Fulkerson. 1960. Zero-one matrices with zero trace. Pacific J. Math., 10 (1960), 831–836. issn:0030-8730 https://doi.org/10.2140/pjm.1960.10.831 Google ScholarGoogle ScholarCross RefCross Ref
  42. M. R. Garey and David S. Johnson. 1976. The Complexity of Near-Optimal Graph Coloring. J. ACM, 23, 1 (1976), 43–49. https://doi.org/10.1145/321921.321926 Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Mrinalkanti Ghosh and Madhur Tulsiani. 2018. From Weak to Strong Linear Programming Gaps for All Constraint Satisfaction Problems. Theory Comput., 14, 1 (2018), 1–33. https://doi.org/10.4086/toc.2018.v014a010 Google ScholarGoogle ScholarCross RefCross Ref
  44. Venkatesan Guruswami and Sanjeev Khanna. 2004. On the Hardness of 4-Coloring a 3-Colorable Graph. SIAM Journal on Discrete Mathematics, 18, 1 (2004), 30–40. https://doi.org/10.1137/S0895480100376794 Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Venkatesan Guruswami and Sai Sandeep. 2020. d-To-1 Hardness of Coloring 3-Colorable Graphs with O(1) Colors. In Proc. 47th International Colloquium on Automata, Languages, and Programming (ICALP’20) (LIPIcs, Vol. 168). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 62:1–62:12. https://doi.org/10.4230/LIPIcs.ICALP.2020.62 Google ScholarGoogle ScholarCross RefCross Ref
  46. C.C Harner and R.C Entringer. 1972. Arc Colorings of Digraphs. J. Comb. Theory, Ser. B, 13, 3 (1972), 219–225. issn:0095-8956 https://doi.org/10.1016/0095-8956(72)90057-3 Google ScholarGoogle ScholarCross RefCross Ref
  47. Pavol Hell and Jaroslav Nešetřil. 2004. Graphs and homomorphisms (Oxford Lecture Series in Mathematics and its Applications, Vol. 28). OUP Oxford. Google ScholarGoogle Scholar
  48. Sangxia Huang. 2013. Improved Hardness of Approximating Chromatic Number. In Proc. 16th International Workshop on Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques and the 17th International Workshop on Randomization and Computation (APPROX-RANDOM’13). Springer, 233–243. isbn:978-3-642-40328-6 https://doi.org/10.1007/978-3-642-40328-6_17 arXiv:1301.5216. Google ScholarGoogle ScholarCross RefCross Ref
  49. Charles R. Johnson and David P. Stanford. 2000. Patterns that allow given row and column sums. Linear Algebra Appl., 311, 1-3 (2000), 97–105. issn:0024-3795 https://doi.org/10.1016/S0024-3795(00)00071-9 Google ScholarGoogle ScholarCross RefCross Ref
  50. Richard M. Karp. 1972. Reducibility Among Combinatorial Problems. In Proc. Complexity of Computer Computations. 85–103. https://doi.org/10.1007/978-1-4684-2001-2_9 Google ScholarGoogle ScholarCross RefCross Ref
  51. Ken-ichi Kawarabayashi and Mikkel Thorup. 2017. Coloring 3-Colorable Graphs with Less than n^1/5 Colors. J. ACM, 64, 1 (2017), 4:1–4:23. https://doi.org/10.1145/3001582 Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Sanjeev Khanna, Nathan Linial, and Shmuel Safra. 2000. On the Hardness of Approximating the Chromatic Number. Comb., 20, 3 (2000), 393–415. https://doi.org/10.1007/s004930070013 Google ScholarGoogle ScholarCross RefCross Ref
  53. Subhash Khot. 2001. Improved Inaproximability Results for MaxClique, Chromatic Number and Approximate Graph Coloring. In Proc. 42nd Annual IEEE Symposium on Foundations of Computer Science (FOCS’01). IEEE Computer Society, 600–609. isbn:0-7695-1390-5 https://doi.org/10.1109/SFCS.2001.959936 Google ScholarGoogle ScholarCross RefCross Ref
  54. Subhash Khot. 2002. On the power of unique 2-prover 1-round games. In Proc. 34th Annual ACM Symposium on Theory of Computing (STOC’02). ACM, 767–775. https://doi.org/10.1145/509907.510017 Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Subhash Khot, Dor Minzer, and Muli Safra. 2017. On independent sets, 2-to-2 games, and Grassmann graphs. In Proc. 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC’17). ACM, 576–589. https://doi.org/10.1145/3055399.3055432 Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Subhash Khot, Dor Minzer, and Muli Safra. 2018. Pseudorandom Sets in Grassmann Graph Have Near-Perfect Expansion. In Proc. 59th IEEE Annual Symposium on Foundations of Computer Science (FOCS’18). IEEE Computer Society, 592–601. https://doi.org/10.1109/FOCS.2018.00062 Google ScholarGoogle ScholarCross RefCross Ref
  57. Pravesh K. Kothari, Raghu Meka, and Prasad Raghavendra. 2017. Approximating rectangles by juntas and weakly-exponential lower bounds for LP relaxations of CSPs. In Proc. 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC’17). ACM, 590–603. https://doi.org/10.1145/3055399.3055438 Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Andrei Krokhin and Jakub Opršal. 2022. An invitation to the promise constraint satisfaction problem. ACM SIGLOG News, 9, 3 (2022), 30–59. arXiv:2208.13538. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Andrei A. Krokhin, Jakub Opršal, Marcin Wrochna, and Stanislav Živný. 2022. Topology and adjunction in promise constraint satisfaction. SIAM J. Comput., arXiv:2003.11351. Google ScholarGoogle Scholar
  60. Jean B. Lasserre. 2002. An Explicit Equivalent Positive Semidefinite Program for Nonlinear 0-1 Programs. SIAM J. Optim., 12, 3 (2002), 756–769. https://doi.org/10.1137/S1052623400380079 Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Monique Laurent. 2003. A Comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre Relaxations for 0-1 Programming. Math. Oper. Res., 28, 3 (2003), 470–496. https://doi.org/10.1287/moor.28.3.470.16391 Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. James R. Lee, Prasad Raghavendra, and David Steurer. 2015. Lower Bounds on the Size of Semidefinite Programming Relaxations. In Proc. 47th Annual ACM on Symposium on Theory of Computing (STOC’15). ACM, 567–576. https://doi.org/10.1145/2746539.2746599 Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Tamio-Vesa Nakajima and Stanislav Živný. 2022. Linearly Ordered Colourings of Hypergraphs. In Proc. 49th International Colloquium on Automata, Languages, and Programming (ICALP’22) (LIPIcs, Vol. 229). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 128:1–128:18. https://doi.org/10.4230/LIPIcs.ICALP.2022.128 arXiv:2204.05628. Google ScholarGoogle ScholarCross RefCross Ref
  64. Pablo A Parrilo. 2000. Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. California Institute of Technology. http://www.cds.caltech.edu/~doyle/hot/thesis.pdf Google ScholarGoogle Scholar
  65. Thomas Schaefer. 1978. The complexity of satisfiability problems. In Proc. 10th Annual ACM Symposium on the Theory of Computing (STOC’78). 216–226. https://doi.org/10.1145/800133.804350 Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Alexander Schrijver. 1986. Theory of linear and integer programming. John Wiley & Sons, Ltd., Chichester. isbn:0-471-90854-1 A Wiley-Interscience Publication Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. H. D. Sherali and W. P. Adams. 1990. A Hierarchy of Relaxations between the Continuous and Convex Hull Representations for Zero-One Programming Problems. SIAM J. Discret. Math., 3, 3 (1990), 411–430. https://doi.org/10.1137/0403036 Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Naum Z Shor. 1987. Class of global minimum bounds of polynomial functions. Cybernetics, 23, 6 (1987), 731–734. https://doi.org/10.1007/BF01070233 Google ScholarGoogle ScholarCross RefCross Ref
  69. Madhur Tulsiani. 2009. CSP gaps and reductions in the Lasserre hierarchy. In Proc. 41st Annual ACM Symposium on Theory of Computing (STOC’09). ACM, 303–312. https://doi.org/10.1145/1536414.1536457 Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Avi Wigderson. 1983. Improving the Performance Guarantee for Approximate Graph Coloring. J. ACM, 30, 4 (1983), 729–735. https://doi.org/10.1145/2157.2158 Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Dmitriy Zhuk. 2020. A Proof of the CSP Dichotomy Conjecture. J. ACM, 67, 5 (2020), 30:1–30:78. https://doi.org/10.1145/3402029 arXiv:1704.01914. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Approximate Graph Colouring and the Hollow Shadow

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        STOC 2023: Proceedings of the 55th Annual ACM Symposium on Theory of Computing
        June 2023
        1926 pages
        ISBN:9781450399135
        DOI:10.1145/3564246

        Copyright © 2023 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 2 June 2023

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate1,469of4,586submissions,32%

        Upcoming Conference

        STOC '24
        56th Annual ACM Symposium on Theory of Computing (STOC 2024)
        June 24 - 28, 2024
        Vancouver , BC , Canada
      • Article Metrics

        • Downloads (Last 12 months)109
        • Downloads (Last 6 weeks)12

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader