skip to main content
research-article
Open Access

Fluidic Topology Optimization with an Anisotropic Mixture Model

Published:30 November 2022Publication History
Skip Abstract Section

Abstract

Fluidic devices are crucial components in many industrial applications involving fluid mechanics. Computational design of a high-performance fluidic system faces multifaceted challenges regarding its geometric representation and physical accuracy. We present a novel topology optimization method to design fluidic devices in a Stokes flow context. Our approach is featured by its capability in accommodating a broad spectrum of boundary conditions at the solid-fluid interface. Our key contribution is an anisotropic and differentiable constitutive model that unifies the representation of different phases and boundary conditions in a Stokes model, enabling a topology optimization method that can synthesize novel structures with accurate boundary conditions from a background grid discretization. We demonstrate the efficacy of our approach by conducting several fluidic system design tasks with over four million design parameters.

Skip Supplemental Material Section

Supplemental Material

3550454.3555429.mp4

mp4

282.6 MB

References

  1. Niels Aage, Thomas H Poulsen, Allan Gersborg-Hansen, and Ole Sigmund. 2008. Topology optimization of large scale stokes flow problems. Structural and Multidisciplinary Optimization 35, 2 (2008), 175--180.Google ScholarGoogle ScholarCross RefCross Ref
  2. Christie Alappat, Achim Basermann, Alan R. Bishop, Holger Fehske, Georg Hager, Olaf Schenk, Jonas Thies, and Gerhard Wellein. 2020. A Recursive Algebraic Coloring Technique for Hardware-Efficient Symmetric Sparse Matrix-Vector Multiplication. ACM Trans. Parallel Comput. 7, 3, Article 19 (June 2020), 37 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Joe Alexandersen and Casper Schousboe Andreasen. 2020. A Review of Topology Optimisation for Fluid-Based Problems. Fluids 5, 1 (2020). Google ScholarGoogle ScholarCross RefCross Ref
  4. Casper Schousboe Andreasen, Allan Roulund Gersborg, and Ole Sigmund. 2009. Topology optimization of microfluidic mixers. International Journal for Numerical Methods in Fluids 61, 5 (2009), 498--513.Google ScholarGoogle ScholarCross RefCross Ref
  5. Casper Schousboe Andreasen and Ole Sigmund. 2013. Topology optimization of fluid-structure-interaction problems in poroelasticity. Computer Methods in Applied Mechanics and Engineering 258 (2013), 55--62.Google ScholarGoogle ScholarCross RefCross Ref
  6. Moritz Bächer, Bernd Bickel, Emily Whiting, and Olga Sorkine-Hornung. 2017. Spin-It: Optimizing Moment of Inertia for Spinnable Objects. Commun. ACM 60, 8 (jul 2017), 92--99. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. P.J. Basser, J. Mattiello, and D. Lebihan. 1994. Estimation of the Effective Self-Diffusion Tensor from the NMR Spin Echo. Journal of Magnetic Resonance, Series B 103, 3 (1994), 247--254.Google ScholarGoogle ScholarCross RefCross Ref
  8. Thomas Borrvall and Joakim Petersson. 2003. Topology optimization of fluids in Stokes flow. International journal for numerical methods in fluids 41, 1 (2003), 77--107.Google ScholarGoogle ScholarCross RefCross Ref
  9. Walter Jesus Paucar Casas and Renato Pavanello. 2017. Optimization of fluid-structure systems by eigenvalues gap separation with sensitivity analysis. Applied Mathematical Modelling 42 (2017), 269--289.Google ScholarGoogle ScholarCross RefCross Ref
  10. Vivien J. Challis and James K. Guest. 2009. Level Set Topology Optimization of Fluids in Stokes Flow. Internat. J. Numer. Methods Engrg. 79, 10 (2009), 1284--1308.Google ScholarGoogle ScholarCross RefCross Ref
  11. Joshua D Deaton and Ramana V Grandhi. 2014. A survey of structural and multidisciplinary continuum topology optimization: post 2000. Structural and Multidisciplinary Optimization 49, 1 (2014), 1--38.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Yongbo Deng, Zhenyu Liu, and Yihui wu. 2012. Topology optimization of steady and unsteady incompressible Navier-Stokes flows driven by body forces. Structural and Multidisciplinary Optimization 47 (11 2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Tao Du, Kui Wu, Pingchuan Ma, Sebastien Wah, Andrew Spielberg, Daniela Rus, and Wojciech Matusik. 2021. DiffPD: Differentiable Projective Dynamics. ACM Trans. Graph. 41, 2, Article 13 (nov 2021), 21 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Tao Du, Kui Wu, Andrew Spielberg, Wojciech Matusik, Bo Zhu, and Eftychios Sifakis. 2020. Functional Optimization of Fluidic Devices with Differentiable Stokes Flow. ACM Trans. Graph. 39, 6, Article 197 (Dec. 2020), 15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Douglas Enright, Ronald Fedkiw, Joel Ferziger, and Ian Mitchell. 2002. A hybrid particle level set method for improved interface capturing. Journal of Computational physics 183, 1 (2002), 83--116.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Anton Evgrafov. 2006. Topology Optimization of Slightly Compressible Fluids. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik: Applied Mathematics and Mechanics 86, 1 (2006), 46--62.Google ScholarGoogle ScholarCross RefCross Ref
  17. Stanley Osher Ronald Fedkiw and Stanley Osher. 2002. Level set methods and dynamic implicit surfaces. Surfaces 44, 77 (2002), 685.Google ScholarGoogle Scholar
  18. F. J. Gaspar, J. L. Gracia, F. J. Lisbona, and C. W. Oosterlee. 2008. Distributive smoothers in multigrid for problems with dominating grad-div operators. Numerical Linear Algebra with Applications 15, 8 (2008), 661--683. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nla.587 Google ScholarGoogle ScholarCross RefCross Ref
  19. Allan Gersborg-Hansen, Ole Sigmund, and Robert B. Haber. 2005. Topology Optimization of Channel Flow Problems. Structural and Multidisciplinary Optimization 30, 3 (2005), 181--192.Google ScholarGoogle ScholarCross RefCross Ref
  20. James K. Guest and Jean H. Prévost. 2006. Topology Optimization of Creeping Fluid Flows Using a Darcy-Stokes Finite Element. Internat. J. Numer. Methods Engrg. 66, 3 (2006), 461--484.Google ScholarGoogle ScholarCross RefCross Ref
  21. Cyril WHirt and Billy D Nichols. 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of computational physics 39, 1 (1981), 201--225.Google ScholarGoogle ScholarCross RefCross Ref
  22. Yuanming Hu, Jiancheng Liu, Andrew Spielberg, Joshua B. Tenenbaum, William T. Freeman, Jiajun Wu, Daniela Rus, and Wojciech Matusik. 2018. ChainQueen: A Real-Time Differentiable Physical Simulator for Soft Robotics. Google ScholarGoogle ScholarCross RefCross Ref
  23. Antony Jameson. 1995. Optimum Aerodynamic Design Using CFD And Control Theory. CFD Review 3 (06 1995). Google ScholarGoogle ScholarCross RefCross Ref
  24. EA Kontoleontos, EM Papoutsis-Kiachagias, AS Zymaris, DI Papadimitriou, and KC Giannakoglou. 2013. Adjoint-based constrained topology optimization for viscous flows, including heat transfer. Engineering Optimization 45, 8 (2013), 941--961.Google ScholarGoogle ScholarCross RefCross Ref
  25. Yijing Li and Jernej Barbič. 2015. Stable anisotropic materials. IEEE transactions on visualization and computer graphics 21, 10 (2015), 1129--1137.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Yijing Li and Jernej Barbič. 2015. Stable Anisotropic Materials. IEEE Transactions on Visualization and Computer Graphics 21, 10 (2015), 1129--1137.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Yifei Li, Tao Du, Kui Wu, Jie Xu, and Wojciech Matusik. 2022. DiffCloth: Differentiable Cloth Simulation with Dry Frictional Contact. ACM Trans. Graph. (mar 2022). Just Accepted. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Haixiang Liu, Yuanming Hu, Bo Zhu, Wojciech Matusik, and Eftychios Sifakis. 2018. Narrow-Band Topology Optimization on a Sparsely Populated Grid. ACM Trans. Graph. 37, 6, Article 251 (dec 2018), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Tadayoshi Matsumori, Tsuguo Kondoh, Atsushi Kawamoto, and Tsuyoshi Nomura. 2013. Topology optimization for fluid-thermal interaction problems under constant input power. Structural and Multidisciplinary Optimization 47, 4 (2013), 571--581.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. K Maute and M Allen. 2004. Conceptual design of aeroelastic structures by topology optimization. Structural and Multidisciplinary Optimization 27, 1--2 (2004), 27--42.Google ScholarGoogle ScholarCross RefCross Ref
  31. Joel McCormack, Ronald Perry, Keith I. Farkas, and Norman P. Jouppi. 1999. Feline: Fast Elliptical Lines for Anisotropic Texture Mapping. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '99). ACM Press/Addison-Wesley Publishing Co., USA, 243--250.Google ScholarGoogle Scholar
  32. Rahul Narain, Armin Samii, and James F O'brien. 2012. Adaptive anisotropic remeshing for cloth simulation. ACM transactions on graphics (TOG) 31, 6 (2012), 1--10.Google ScholarGoogle Scholar
  33. Carsten Othmer, Eugene de Villiers, and Henry Weller. 2007. Implementation of a continuous adjoint for topology optimization of ducted flows. In 18th AIAA Computational Fluid Dynamics Conference. the American Institute of Aeronautics and Astronautics, Reston, VA, USA, 3947.Google ScholarGoogle ScholarCross RefCross Ref
  34. Julian Panetta, Qingnan Zhou, Luigi Malomo, Nico Pietroni, Paolo Cignoni, and Denis Zorin. 2015. Elastic Textures for Additive Fabrication. ACM Trans. Graph. 34, 4, Article 135 (July 2015), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Taylor Patterson, Nathan Mitchell, and Eftychios Sifakis. 2012. Simulation of complex nonlinear elastic bodies using lattice deformers. ACM Transactions on Graphics (TOG) 31, 6 (2012), 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Tobias Pfaff, Nils Thuerey, Jonathan Cohen, Sarah Tariq, and Markus Gross. 2010. Scalable Fluid Simulation Using Anisotropic Turbulence Particles. ACM Trans. Graph. 29, 6, Article 174 (dec 2010), 8 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. George IN Rozvany. 2009. A critical review of established methods of structural topology optimization. Structural and multidisciplinary optimization 37, 3 (2009), 217--237.Google ScholarGoogle Scholar
  38. Camille Schreck and Chris Wojtan. 2020. A Practical Method for Animating Anisotropic Elastoplastic Materials. Computer Graphics Forum 39, 2 (2020), 89--99.Google ScholarGoogle ScholarCross RefCross Ref
  39. Christian Schumacher, Bernd Bickel, Jan Rys, Steve Marschner, Chiara Daraio, and Markus Gross. 2015. Microstructures to Control Elasticity in 3D Printing. ACM Trans. Graph. 34, 4, Article 136 (jul 2015), 13 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Ole Sigmund and Kurt Maute. 2013. Topology optimization approaches. Structural and Multidisciplinary Optimization 48, 6 (2013), 1031--1055.Google ScholarGoogle ScholarCross RefCross Ref
  41. Mélina Skouras, Bernhard Thomaszewski, Peter Kaufmann, Akash Garg, Bernd Bickel, Eitan Grinspun, and Markus Gross. 2014. Designing inflatable structures. ACM Transactions on Graphics (TOG) 33, 4 (2014), 63.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Mark Sussman and Elbridge Gerry Puckett. 2000. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. Journal of computational physics 162, 2 (2000), 301--337.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Krister Svanberg. 1987. The method of moving asymptotes---a new method for structural optimization. International journal for numerical methods in engineering 24, 2 (1987), 359--373.Google ScholarGoogle ScholarCross RefCross Ref
  44. Jiaping Wang, Shuang Zhao, Xin Tong, John Snyder, and Baining Guo. 2008. Modeling Anisotropic Surface Reflectance with Example-Based Microfacet Synthesis. ACM Trans. Graph. 27, 3 (aug 2008), 1--9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Lingfeng Wang and Emily Whiting. 2016. Buoyancy Optimization for Computational Fabrication. Computer Graphics Forum (Proceedings of Eurographics) 35, 2 (2016).Google ScholarGoogle Scholar
  46. Jun Wu, Niels Aage, Rüdiger Westermann, and Ole Sigmund. 2018. Infill Optimization for Additive Manufacturing---Approaching Bone-Like Porous Structures. IEEE Transactions on Visualization and Computer Graphics 24, 2 (2018), 1127--1140.Google ScholarGoogle ScholarCross RefCross Ref
  47. Yuwei Xiao, Szeyu Chan, Siqi Wang, Bo Zhu, and Xubo Yang. 2020. An adaptive staggered-tilted grid for incompressible flow simulation. ACM Transactions on Graphics (TOG) 39, 6 (2020), 1--15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Kentaro Yaji, Takayuki Yamada, Seiji Kubo, Kazuhiro Izui, and Shinji Nishiwaki. 2015. A topology optimization method for a coupled thermal-fluid problem using level set boundary expressions. International Journal of Heat and Mass Transfer 81 (2015), 878--888.Google ScholarGoogle ScholarCross RefCross Ref
  49. Gil Ho Yoon. 2010. Topology Optimization for Stationary Fluid-Structure Interaction Problems Using a New Monolithic Formulation. Internat. J. Numer. Methods Engrg. 82, 5 (2010), 591--616.Google ScholarGoogle ScholarCross RefCross Ref
  50. Jihun Yu and Greg Turk. 2013. Reconstructing surfaces of particle-based fluids using anisotropic kernels. ACM Transactions on Graphics (TOG) 32, 1 (2013), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Shiwei Zhou and Qing Li. 2008. A Variational Level Set Method for the Topology Optimization of Steady-State Navier-Stokes Flow. J. Comput. Phys. 227, 24 (2008), 10178--10195.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Bo Zhu, Mélina Skouras, Desai Chen, and Wojciech Matusik. 2017. Two-Scale Topology Optimization with Microstructures. ACM Trans. Graph. 36, 4, Article 120b (jul 2017), 16 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Fluidic Topology Optimization with an Anisotropic Mixture Model

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 41, Issue 6
      December 2022
      1428 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3550454
      Issue’s Table of Contents

      Copyright © 2022 Owner/Author

      This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike International 4.0 License.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 30 November 2022
      Published in tog Volume 41, Issue 6

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader