skip to main content
10.1145/2611765.2611772acmconferencesArticle/Chapter ViewAbstractPublication PageshaspConference Proceedingsconference-collections
research-article

Side-channel leakage and trace compression using normalized inter-class variance

Authors Info & Claims
Published:15 June 2014Publication History

ABSTRACT

Security and safety critical devices must undergo penetration testing including Side-Channel Attacks (SCA) before certification. SCA are powerful and easy to mount but often need huge computation power, especially in the presence of countermeasures. Few efforts have been done to reduce the computation complexity of SCA by selecting a small subset of points where leakage prevails. In this paper, we propose a method to detect relevant leakage points in side-channel traces. The method is based on Normalized Inter-Class Variance (NICV). A key advantage of NICV over state-of-the-art is that NICV does neither need a clone device nor the knowledge of secret parameters of the crypto-system. NICV has a low computation requirement and it detects leakage using public information like input plaintexts or output cipher-texts only. It is shown that NICV can be related to Pearson correlation and signal to noise ratio (SNR) which are standard metrics. NICV can be used to theoretically compute the minimum number of traces required to attack an implementation. A theoretical rationale of NICV with some practical application on real crypto-systems are provided to support our claims.

References

  1. M. A. E. Aabid, S. Guilley, and P. Hoogvorst. Template Attacks with a Power Model. Cryptology ePrint Archive, Report 2007/443, December 2007. http://eprint.iacr.org/2007/443/.Google ScholarGoogle Scholar
  2. C. Archambeau, É. Peeters, F.-X. Standaert, and J.-J. Quisquater. Template Attacks in Principal Subspaces. In CHES, volume 4249 of LNCS, pages 1--14. Springer, October 10-13 2006. Yokohama, Japan. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. L. Batina, B. Gierlichs, and K. Lemke-Rust. Differential Cluster Analysis. In C. Clavier and K. Gaj, editors, Cryptographic Hardware and Embedded Systems -- CHES 2009, volume 5747 of Lecture Notes in Computer Science, pages 112--127, Lausanne, Switzerland, 2009. Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. É. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage Model. In CHES, volume 3156 of LNCS, pages 16--29. Springer, August 11--13 2004. Cambridge, MA, USA.Google ScholarGoogle Scholar
  5. S. Chari, J. R. Rao, and P. Rohatgi. Template Attacks. In CHES, volume 2523 of LNCS, pages 13--28. Springer, August 2002. San Francisco Bay (Redwood City), USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. O. Choudary and M. G. Kuhn. Efficient Template Attacks. Cryptology ePrint Archive, Report 2013/770, 2013. http://eprint.iacr.org/2013/770.Google ScholarGoogle Scholar
  7. C. C. Consortium. Common Criteria (aka CC) for Information Technology Security Evaluation (ISO/IEC 15408), 2013. Website: http://www.commoncriteriaportal.org/.Google ScholarGoogle Scholar
  8. J. Cooper, G. Goodwill, J. Jaffe, G. Kenworthy, and P. Rohatgi. Test Vector Leakage Assessment (TVLA) Methodology in Practice, Sept 24--26 2013. International Cryptographic Module Conference (ICMC), Holiday Inn Gaithersburg, MD, USA.Google ScholarGoogle Scholar
  9. J.-S. Coron, P. C. Kocher, and D. Naccache. Statistics and Secret Leakage. In Financial Cryptography, volume 1962 of Lecture Notes in Computer Science, pages 157--173. Springer, February 20-24 2000. Anguilla, British West Indies. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J.-L. Danger, N. Debande, S. Guilley, and Y. Souissi. High-order timing attacks. In Proceedings of the First Workshop on Cryptography and Security in Computing Systems, CS2 '14, pages 7--12, New York, NY, USA, 2014. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J. Doget, E. Prouff, M. Rivain, and F.-X. Standaert. Univariate side channel attacks and leakage modeling. J. Cryptographic Engineering, 1(2):123--144, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  12. R. J. Easter, J.-P. Quemard, and J. Kondo. Text for ISO/IEC 1st CD 17825 -- Information technology -- Security techniques -- Non-invasive attack mitigation test metrics for cryptographic modules, March 22 2014. Prepared within ISO/IEC JTC 1/SC 27/WG 3. (Online).Google ScholarGoogle Scholar
  13. Y. Fei, Q. Luo, and A. A. Ding. A Statistical Model for DPA with Novel Algorithmic Confusion Analysis. In E. Prouff and P. Schaumont, editors, CHES, volume 7428 of LNCS, pages 233--250. Springer, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. B. Gierlichs, K. Lemke-Rust, and C. Paar. Templates vs. Stochastic Methods. In CHES, volume 4249 of LNCS, pages 15--29. Springer, October 10-13 2006. Yokohama, Japan. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi. A testing methodology for side-channel resistance validation, September 2011. NIST Non-Invasive Attack Testing Workshop, http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf.Google ScholarGoogle Scholar
  16. S. Guilley, S. Chaudhuri, L. Sauvage, P. Hoogvorst, R. Pacalet, and G. M. Bertoni. Security Evaluation of WDDL and SecLib Countermeasures against Power Attacks. IEEE Transactions on Computers, 57(11):1482--1497, nov 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. S. Guilley, R. Nguyen, and L. Sauvage. Non-Invasive Attacks Testing: Feedback on Relevant Methods, Sept 24--26 2013. International Cryptographic Module Conference (ICMC), Holiday Inn Gaithersburg, MD, USA.Google ScholarGoogle Scholar
  18. A. Heuser, W. Schindler, and M. Stöttinger. Revealing side-channel issues of complex circuits by enhanced leakage models. In W. Rosenstiel and L. Thiele, editors, DATE, pages 1179--1184. IEEE, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. I. T. Jolliffe. Principal Component Analysis. Springer Series in Statistics, 2002. ISBN: 0387954422.Google ScholarGoogle Scholar
  20. P. Karsmakers, B. Gierlichs, K. Pelckmans, K. D. Cock, J. Suykens, B. Preneel, and B. D. Moor. Side channel attacks on cryptographic devices as a classification problem. COSIC technical report, 2009.Google ScholarGoogle Scholar
  21. V. Lomné, E. Prouff, and T. Roche. Behind the scene of side channel attacks. In K. Sako and P. Sarkar, editors, ASIACRYPT (1), volume 8269 of LNCS, pages 506--525. Springer, 2013.Google ScholarGoogle Scholar
  22. S. Mangard. Hardware Countermeasures against DPA -- A Statistical Analysis of Their Effectiveness. In CT-RSA, volume 2964 of Lecture Notes in Computer Science, pages 222--235. Springer, 2004. San Francisco, CA, USA.Google ScholarGoogle Scholar
  23. S. Mangard, E. Oswald, and F.-X. Standaert. One for All - All for One: Unifying Standard DPA Attacks. Information Security, IET, 5(2):100--111, 2011. ISSN: 1751-8709; Digital Object Identifier: 10.1049/iet-ifs.2010.0096.Google ScholarGoogle Scholar
  24. A. Moradi, S. Guilley, and A. Heuser. Detecting Hidden Leakages. In I. Boureanu, P. Owesarski, and S. Vaudenay, editors, ACNS, volume 8479. Springer, June 10-13 2014. 12th International Conference on Applied Cryptography and Network Security, Lausanne, Switzerland.Google ScholarGoogle Scholar
  25. A. Moradi, O. Mischke, and T. Eisenbarth. Correlation-Enhanced Power Analysis Collision Attack. In CHES, volume 6225 of Lecture Notes in Computer Science, pages 125--139. Springer, August 17-20 2010. Santa Barbara, CA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. E. Prouff, M. Rivain, and R. Bevan. Statistical Analysis of Second Order Differential Power Analysis. IEEE Trans. Computers, 58(6):799--811, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. M. Renauld, F.-X. Standaert, N. Veyrat-Charvillon, D. Kamel, and D. Flandre. A Formal Study of Power Variability Issues and Side-Channel Attacks for Nanoscale Devices. In EUROCRYPT, volume 6632 of LNCS, pages 109--128. Springer, May 2011. Tallinn, Estonia. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. W. Schindler, K. Lemke, and C. Paar. A Stochastic Model for Differential Side Channel Cryptanalysis. In LNCS, editor, CHES, volume 3659 of LNCS, pages 30--46. Springer, Sept 2005. Edinburgh, Scotland, UK. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Y. Souissi, M. Nassar, S. Guilley, J.-L. Danger, and F. Flament. First Principal Components Analysis: A New Side Channel Distinguisher. In K. H. Rhee and D. Nyang, editors, ICISC, volume 6829 of Lecture Notes in Computer Science, pages 407--419. Springer, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. F.-X. Standaert, B. Gierlichs, and I. Verbauwhede. Partition vs. Comparison Side-Channel Distinguishers: An Empirical Evaluation of Statistical Tests for Univariate Side-Channel Attacks against Two Unprotected CMOS Devices. In ICISC, volume 5461 of LNCS, pages 253--267. Springer, December 3-5 2008. Seoul, Korea.Google ScholarGoogle Scholar
  31. A. Thillard, E. Prouff, and T. Roche. Success through Confidence: Evaluating the Effectiveness of a Side-Channel Attack. In G. Bertoni and J.-S. Coron, editors, CHES, volume 8086 of Lecture Notes in Computer Science, pages 21--36. Springer, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. C. Whitnall, E. Oswald, and F.-X. Standaert. The myth of generic DPA...and the magic of learning. Cryptology ePrint Archive, Report 2012/256, 2012. http://eprint.iacr.org/2012/256.Google ScholarGoogle Scholar
  33. D. W. Zimmerman, B. D. Zumbo, and R. H. Williams. Bias in Estimation and Hypothesis Testing of Correlation. Psicológica, 24:133--158, 2003.Google ScholarGoogle Scholar

Index Terms

  1. Side-channel leakage and trace compression using normalized inter-class variance

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          HASP '14: Proceedings of the Third Workshop on Hardware and Architectural Support for Security and Privacy
          June 2014
          89 pages
          ISBN:9781450327770
          DOI:10.1145/2611765

          Copyright © 2014 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 15 June 2014

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate9of13submissions,69%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader