skip to main content
research-article

Image-based bidirectional scene reprojection

Published:12 December 2011Publication History
Skip Abstract Section

Abstract

We introduce a method for increasing the framerate of real-time rendering applications. Whereas many existing temporal upsampling strategies only reuse information from previous frames, our bidirectional technique reconstructs intermediate frames from a pair of consecutive rendered frames. This significantly improves the accuracy and efficiency of data reuse since very few pixels are simultaneously occluded in both frames. We present two versions of this basic algorithm. The first is appropriate for fill-bound scenes as it limits the number of expensive shading calculations, but involves rasterization of scene geometry at each intermediate frame. The second version, our more significant contribution, reduces both shading and geometry computations by performing reprojection using only image-based buffers. It warps and combines the adjacent rendered frames using an efficient iterative search on their stored scene depth and flow. Bidirectional reprojection introduces a small amount of lag. We perform a user study to investigate this lag, and find that its effect is minor. We demonstrate substantial performance improvements (3--4x) for a variety of applications, including vertex-bound and fill-bound scenes, multi-pass effects, and motion blur.

Skip Supplemental Material Section

Supplemental Material

References

  1. Andreev, D. 2010. Real-time framerate up-conversion for video games. In SIGGRAPH 2010 Talks. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Badt, Jr., S. 1988. Two algorithms for taking advantage of temporal coherence in ray tracing. The Visual Computer, 4(3):123--132.Google ScholarGoogle ScholarCross RefCross Ref
  3. Beier, T. and Neely, S. 1992. Feature-based image metamorphosis. SIGGRAPH Comput. Graph., 26(2):35--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Chen, S. E. and Williams, L. 1993. View interpolation for image synthesis. In Proc. ACM SIGGRAPH 93, pages 279--288. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. d'Eon, E. and Luebke, D. 2007. Advanced techniques for realistic real-time skin rendering. In GPU Gems 3, Addison-Wesley.Google ScholarGoogle Scholar
  6. Didyk, P., Eisemann, E., Ritschel, T., Myszkowski, K., and Seidel, H.-P. 2010. Perceptually-motivated real-time temporal upsampling of 3D content for high-refresh-rate displays. Computer Graphics Forum, 29(2).Google ScholarGoogle Scholar
  7. Didyk, P., Ritschel, T., Eisemann, E., Myszkowski, K., and Seidel, H.-P. 2010. Adaptive image-space stereo view synthesis. In Vision, Modeling, and Visualization.Google ScholarGoogle Scholar
  8. Eisemann, M., De Decker, B., Magnor, M., Bekaert, P., De Aguiar, E., Ahmed, N., Theobalt, C., and Sellent, A. 2008. Floating textures. Computer Graphics Forum, 27(2).Google ScholarGoogle Scholar
  9. Fitzgibbon, A., Wexler, Y., and Zisserman, A. 2005. Image-based rendering using image-based priors. International Journal of Computer Vision, 63(2):141--151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Herzog, R., Eisemann, E., Myszkowski, K., and Seidel, H.-P. 2010. Spatio-temporal upsampling on the GPU. In Symposium on Interactive 3D Graphics and Games, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Mahajan, D., Huang, F.-C., Matusik, W., Ramamoorthi, R., and Belhumeur, P. 2009. Moving gradients: a path-based method for plausible image interpolation. ACM Trans. Graph., 28(3):1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Mark, W. R., McMillan, L., and Bishop, G. 1997. Postrendering 3D warping. In Proc. Symposium of Interactive 3D Graphics, pages 7--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Mattausch, O., Scherzer, D., and Wimmer, M. 2010. High-quality screen-space ambient occlusion using temporal coherence. Computer Graphics Forum, 29(8):2492--2503.Google ScholarGoogle ScholarCross RefCross Ref
  14. McMillan, L. and Bishop, G. 1995. Plenoptic modeling: an image-based rendering system. In Proc. ACM SIGGRAPH 95. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Nehab, D., Sander, P. V., Lawrence, J., Tatarchuk, N., and Isidoro, J. R. 2007. Accelerating real-time shading with reverse reprojection caching. In Graphics Hardware, pages 25--35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Pajak, D., Herzog, R., Eisemann, E., Myszkowski, K., and Seidel, H.-P. 2011. Scalable remote rendering with depth and motion-flow augmented streaming. Comp. Graph. Forum, 30(2).Google ScholarGoogle Scholar
  17. Scherzer, D., Jeschke, S., and Wimmer, M. 2007. Pixel-correct shadow maps with temporal reprojection and shadow test confidence. In Eurograph. Symp. Rendering, pages 45--50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Scherzer, D., Schwärzler, M., Mattausch, O., and Wimmer, M. 2009. Real-time soft shadows using temporal coherence. LNCS (Proc. ISVC), 5876:13--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Scherzer, D., Yang, L., Mattausch, O., Nehab, D., Sander, P. V., Wimmer, M., and Eisemann, E. 2011. A survey on temporal coherence methods in real-time rendering. In Eurographics State of the Art Reports.Google ScholarGoogle Scholar
  20. Seitz, S. M. and Dyer, C. R. 1996. View morphing. In Proc. ACM SIGGRAPH 96, ACM, pages 21--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Sitthi-amorn, P., Lawrence, J., Yang, L., Sander, P. V., and Nehab, D. 2008. An improved shading cache for modern GPUs. In Proc. of Graphics Hardware, pages 95--101. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Sitthi-amorn, P., Lawrence, J., Yang, L., Sander, P. V., Nehab, D., and Xi, J. 2008. Automated reprojection-based pixel shader optimization. ACM Trans. Graph., 27(5):127. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Stich, T., Linz, C., Albuquerque, G., and Magnor, M. 2008. View and time interpolation in image space. Computer Graphics Forum (Proc. of Pacific Graphics), 27(7):1781--1787.Google ScholarGoogle ScholarCross RefCross Ref
  24. Stich, T., Linz, C., Wallraven, C., Cunningham, D., and Magnor, M. 2008. Perception-motivated interpolation of image sequences. In Proc. Appl. Percept. Graph. Visul., pages 97--106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Sullivan, G. J. and Wiegand, T. 2005. Video compression from concepts to the H.264-AVC standard. In Proceedings of the IEEE.Google ScholarGoogle Scholar
  26. Vedula, S., Baker, S., and Kanade, T. 2002. Spatio-temporal view interpolation. In Eurograph. Workshop on Rendering. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. 2004. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Proc., 13(4):600--612. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Wiegand, T., Sullivan, G. J., Bj ontegaard, G., and Luthra, A. 2003. Overview of the H.264-AVC video coding standard. IEEE Trans. Circ. Syst. Video Tech., 13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Yang, L., Nehab, D., Sander, P. V., Sitthi-amorn, P., Lawrence, J., and Hoppe, H. 2009. Amortized supersampling. ACM Trans. Graph., 28(5):135. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Image-based bidirectional scene reprojection

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 30, Issue 6
          December 2011
          678 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2070781
          Issue’s Table of Contents

          Copyright © 2011 ACM

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 12 December 2011
          Published in tog Volume 30, Issue 6

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader