skip to main content
10.1145/3387514.3405853acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article
Open Access

Concurrent Entanglement Routing for Quantum Networks: Model and Designs

Published:30 July 2020Publication History

ABSTRACT

Quantum entanglement enables important computing applications such as quantum key distribution. Based on quantum entanglement, quantum networks are built to provide long-distance secret sharing between two remote communication parties. Establishing a multi-hop quantum entanglement exhibits a high failure rate, and existing quantum networks rely on trusted repeater nodes to transmit quantum bits. However, when the scale of a quantum network increases, it requires end-to-end multi-hop quantum entanglements in order to deliver secret bits without letting the repeaters know the secret bits. This work focuses on the entanglement routing problem, whose objective is to build long-distance entanglements via untrusted repeaters for concurrent source-destination pairs through multiple hops. Different from existing work that analyzes the traditional routing techniques on special network topologies, we present a comprehensive entanglement routing model that reflects the differences between quantum networks and classical networks as well as a new entanglement routing algorithm that utilizes the unique properties of quantum networks. Evaluation results show that the proposed algorithm Q-CAST increases the number of successful long-distance entanglements by a big margin compared to other methods. The model and simulator developed by this work may encourage more network researchers to study the entanglement routing problem.

Skip Supplemental Material Section

Supplemental Material

3387514.3405853.mp4

mp4

565.9 MB

References

  1. 2019. Source Code of the Quantum Routing Simulations. https://github.com/QianLabUCSC/QuantumRouting.Google ScholarGoogle Scholar
  2. Ian F Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci. 2002. Wireless sensor networks: a survey. Computer Networks (2002).Google ScholarGoogle Scholar
  3. Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson Huang, and Amin Vahdat. 2010. Hedera: dynamic flow scheduling for data center networks. In Proceedings of USENIX NSDI.Google ScholarGoogle Scholar
  4. James Aspnes, Yossi Azar, Amos Fiat, Serge Plotkin, and Orli Waarts. 1993. Online load balancing with applications to machine scheduling and virtual circuit routing. In Proceedings of the twenty-fifth annual ACM symposium on Theory of computing.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Charles H Bennett and Gilles Brassard. 1984. Quantum Cryptography: Public Key Distribution and Coin Tossing. In Proceedings of the International Conference on Computers, Systems and Signal Processing.Google ScholarGoogle Scholar
  6. Hannes Bernien, Bas Hensen, Wolfgang Pfaff, Gerwin Koolstra, Machiel S Blok, Lucio Robledo, TH Taminiau, Matthew Markham, Daniel J Twitchen, Lilian Childress, and R. Hanson. 2013. Heralded entanglement between solid-state qubits separated by three metres. Nature (2013).Google ScholarGoogle Scholar
  7. Anne Broadbent, Joseph Fitzsimons, and Elham Kashefi. 2009. Universal blind quantum computation. In 2009 50th Annual IEEE Symposium on Foundations of Computer Science.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Angela Sara Cacciapuoti, Marcello Caleffi, Francesco Tafuri, Francesco Saverio Cataliotti, Stefano Gherardini, and Giuseppe Bianchi. 2019. Quantum internet: networking challenges in distributed quantum computing. IEEE Network (2019).Google ScholarGoogle Scholar
  9. M. Caleffi. 2017. Optimal Routing for Quantum Networks. IEEE Access (2017).Google ScholarGoogle ScholarCross RefCross Ref
  10. Marcello Caleffi, Angela Sara Cacciapuoti, and Giuseppe Bianchi. 2018. Quantum Internet: From Communication to Distributed Computing! (Proceedings of NANOCOM '18).Google ScholarGoogle Scholar
  11. Lilian Childress and Ronald Hanson. 2013. Diamond NV centers for quantum computing and quantum networks. MRS bulletin 38, 2 (2013), 134--138.Google ScholarGoogle Scholar
  12. Richard Cole, Bruce M Maggs, Friedhelm Meyer auf der Heide, Michael Mitzenmacher, Andréa W Richa, Klaus Schröder, Ramesh K Sitaraman, and Berthold Vöcking. 1998. Randomized protocols for low-congestion circuit routing in multistage interconnection networks. In Proceedings of the thirtieth annual ACM symposium on Theory of computing.Google ScholarGoogle Scholar
  13. Axel Dahlberg, Matthew Skrzypczyk, Tim Coopmans, Leon Wubben, Filip Rozpedek, Matteo Pompili, Arian Stolk, Przemyslaw Pawelczak, Robert Knegjens, Julio de Oliveira Filho, Ronald Hanson, and Stephanie Wehner. 2019. A link layer protocol for quantum networks. In Proceedings of ACM SIGCOMM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. S. Das, S. Khatri, and J. P. Dowling. 2018. Robust quantum network architectures and topologies for entanglement distribution. Phys. Rev. A (2018).Google ScholarGoogle Scholar
  15. Vasil S Denchev and Gopal Pandurangan. 2008. Distributed quantum computing: A new frontier in distributed systems or science fiction? ACM SIGACT News (2008).Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Whitfield Diffie and Martin Hellman. 1976. New directions in cryptography. IEEE transactions on Information Theory (1976).Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Artur K Ekert. 1991. Quantum cryptography based on Bell's theorem. Physical review letters (1991).Google ScholarGoogle Scholar
  18. Chip Elliot. 2002. Building the quantum network. New Journal of Physics (2002).Google ScholarGoogle Scholar
  19. Chip Elliott, David Pearson, and Gregory Troxel. 2003. Quantum Cryptography in Practice. In Proceedings of ACM SIGCOMM. Association for Computing Machinery.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Xiaoyan Hong, Kaixin Xu, and Mario Gerla. 2002. Scalable routing protocols for mobile ad hoc networks. IEEE network (2002).Google ScholarGoogle Scholar
  21. Peter C. Humphreys, Norbert Kalb, Jaco P. J. Morits, Raymond N. Schouten, Raymond F. L. Vermeulen, Daniel J. Twitchen, Matthew Markham, and Ronald Hanson. 2018. Deterministic delivery of remote entanglement on a quantum network. Nature (2018).Google ScholarGoogle Scholar
  22. David B. Johnson and David A. Maltz. 1996. Dynamic Source Routing in Ad Hoc Wireless Networks. In Mobile Computing. Kluwer Academic Publishers, 153--181.Google ScholarGoogle Scholar
  23. Brad Karp and Hsiang-Tsung Kung. 2000. GPSR: Greedy perimeter stateless routing for wireless networks. In Proceedings of the 6th annual international conference on Mobile computingand networking.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Axel Dahlberg Kaushik Chakraborty, Filip Rozpedek and Stephanie Wehner. 2019. Distributed Routing in a Quantum Internet. arXiv:1907.11630 (2019).Google ScholarGoogle Scholar
  25. H Jeff Kimble. 2008. The quantum internet. Nature (2008).Google ScholarGoogle Scholar
  26. Peter Komar, Eric M Kessler, Michael Bishof, Liang Jiang, Anders S Sørensen, Jun Ye, and Mikhail D Lukin. 2014. A quantum network of clocks. Nature Physics (2014).Google ScholarGoogle Scholar
  27. Simon S. Lam and Chen Qian. 2011. Geographic Routing in d-dimensional Spaces with Guaranteed Delivery and Low Stretch. In Proceedings of ACM SIGMETRICS.Google ScholarGoogle Scholar
  28. Yuan Lee, Eric Bersin, Axel Dahlberg, Stephanie Wehner, and Dirk Englund. 2020. A Quantum Router Architecture for High-Fidelity Entanglement Flows in Multi-User Quantum Networks. arXiv:2005.01852 [quant-ph]Google ScholarGoogle Scholar
  29. David Luong, Liang Jiang, Jungsang Kim, and Norbert Lütkenhaus. 2016. Overcoming lossy channel bounds using a single quantum repeater node. Applied Physics B 122, 4 (Apr 2016). https://doi.org/10.1007/s00340-016-6373-4Google ScholarGoogle ScholarCross RefCross Ref
  30. Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. 2001. BRITE: An Approach to Universal Topology Generation. In International Workshop on Modeling, Analysis and Simulation of Computer and Telecommunications Systems.Google ScholarGoogle ScholarCross RefCross Ref
  31. Rodney Van Meter, Takahiko Satoh, Thaddeus D. Ladd, William J. Munro, and Kae Nemoto. 2013. Path Selection for Quantum Repeater Networks. Networking Science (2013).Google ScholarGoogle Scholar
  32. David L Moehring, Peter Maunz, Steve Olmschenk, Kelly C Younge, Dzmitry N Matsukevich, L-M Duan, and Christopher Monroe. 2007. Entanglement of singleatom quantum bits at a distance. Nature (2007).Google ScholarGoogle Scholar
  33. J. Moy. 1998. OSPF Version 2. RFC 2328.Google ScholarGoogle Scholar
  34. S Olmschenk, DN Matsukevich, P Maunz, D Hayes, L-M Duan, and C Monroe. 2009. Quantum teleportation between distant matter qubits. Science (2009).Google ScholarGoogle Scholar
  35. Jian-Wei Pan, Dik Bouwmeester, Harald Weinfurter, and Anton Zeilinger. 1998. Experimental entanglement swapping: entangling photons that never interacted. Physical Review Letters (1998).Google ScholarGoogle Scholar
  36. Mihir Pant, Hari Krovi, Don Towsley, Leandros Tassiulas, Liang Jiang, Prithwish Basu, Dirk Englund, and Saikat Guha. 2019. Routing Entanglement in the Quantum Internet. npj Quantum Information (2019).Google ScholarGoogle Scholar
  37. James L Park. 1970. The concept of transition in quantum mechanics. Foundations of Physics (1970).Google ScholarGoogle Scholar
  38. Momtchil Peev, Christoph Pacher, Romain Alléaume, Claudio Barreiro, Jan Bouda, W Boxleitner, Thierry Debuisschert, Eleni Diamanti, M Dianati, JF Dynes, S Fasel, S Fossier, M Fürst, J-D Gautier, O Gay, N Gisin, P Grangier, A Happe, Y Hasani, M Hentschel, H Hübel, G Humer, T Länger, M Legré, R Lieger, J Lodewyck, T Lorünser, N Lütkenhaus, A Marhold, T Matyus, O Maurhart, L Monat, S Nauerth, J-B Page, A Poppe, E Querasser, G Ribordy, S Robyr, L Salvail, A W Sharpe, A J Shields, D Stucki, M Suda, C Tamas, T Themel, R T Thew, Y Thoma, A Treiber, P Trinkler, R Tualle-Brouri, F Vannel, N Walenta, H Weier, H Weinfurter, I Wimberger, Z L Yuan, H Zbinden, and A Zeilinger. 2009. The SECOQC quantum key distribution network in Vienna. New Journal of Physics (2009).Google ScholarGoogle Scholar
  39. Charles E. Perkins and Elizabeth M. Royer. 1999. Ad-hoc On-demand Distance Vector Routing. In IEEE WORKSHOP ON MOBILE COMPUTING SYSTEMS AND APPLICATIONS. 90--100.Google ScholarGoogle Scholar
  40. Stefano Pirandola. 2019. End-to-end capacities of a quantum communication network. Commun. Phys 2 (2019), 51.Google ScholarGoogle ScholarCross RefCross Ref
  41. Stefano Pirandola, Ulrik L Andersen, Leonardo Banchi, Mario Berta, Darius Bunandar, Roger Colbeck, Dirk Englund, Tobias Gehring, Cosmo Lupo, Carlo Ottaviani, J. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden. 2019. Advances in Quantum Cryptography. arXiv:1906.01645 [quant-ph]Google ScholarGoogle Scholar
  42. Stefano Pirandola, Raul García-Patrón, Samuel L Braunstein, and Seth Lloyd. 2009. Direct and reverse secret-key capacities of a quantum channel. Physical review letters 102, 5 (2009), 050503.Google ScholarGoogle Scholar
  43. Stefano Pirandola, Riccardo Laurenza, Carlo Ottaviani, and Leonardo Banchi. 2017. Fundamental limits of repeaterless quantum communications. Nature communications (2017).Google ScholarGoogle Scholar
  44. Chen Qian and Simon Lam. 2011. Greedy distance vector routing. In Proceedings of IEEE ICDCS.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Mark Riebe, H Häffner, CF Roos, W Hänsel, J Benhelm, GPT Lancaster, TW Körber, C Becher, F Schmidt-Kaler, DFV James, et al. 2004. Deterministic quantum teleportation with atoms. Nature 429, 6993 (2004).Google ScholarGoogle Scholar
  46. Ronald L Rivest, Adi Shamir, and Leonard Adleman. 1978. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM (1978).Google ScholarGoogle ScholarCross RefCross Ref
  47. Reza Rooholamini, Vladimir Cherkassky, and Mark Garver. 1997. Finding the Right ATM Switch for the Market. IEEE Computer (1997).Google ScholarGoogle Scholar
  48. M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger. 2012. Field test of quantum key distribution in the Tokyo QKD Network. Optics Express (2012).Google ScholarGoogle Scholar
  49. Eddie Schoute, Laura Mancinska, Tanvirul Islam, Iordanis Kerenidis, and Stephanie Wehner. 2016. Shortcuts to quantum network routing. arXiv preprint arXiv:1610.05238 (2016).Google ScholarGoogle Scholar
  50. Peter W Shor. 1994. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings 35th annual symposium on foundations of computer science.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Ankit Singla, Chi-Yao Hong, Lucian Popa, and P. Brighten Godfrey. 2012. Jellyfish: Networking Data Centers Randomly. In Proceedings of USENIX NSDI.Google ScholarGoogle Scholar
  52. Pirandola Stefano and Braunstein Samuel Leon. 2016. Unite to build a quantum internet. Nature 532 (2016), 169--171.Google ScholarGoogle ScholarCross RefCross Ref
  53. Masahiro Takeoka, Saikat Guha, and Mark M Wilde. 2014. Fundamental rate-loss tradeoff for optical quantum key distribution. Nature communications (2014).Google ScholarGoogle Scholar
  54. Rodney Van Meter and Joe Touch. 2013. Designing quantum repeater networks. IEEE Communications Magazine (2013).Google ScholarGoogle ScholarCross RefCross Ref
  55. Gayane Vardoyan, Saikat Guha, Philippe Nain, and Don Towsley. 2019. On the Stochastic Analysis of a Quantum Entanglement Switch. In ACM SIGMETRICS Performance Evaluation Review.Google ScholarGoogle Scholar
  56. Bernard M Waxman. 1988. Routing of multipoint connections. IEEE journal on selected areas in communications (1988).Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Stephanie Wehner, David Elkouss, and Ronald Hanson. 2018. Quantum internet: A vision for the road ahead. Science (2018).Google ScholarGoogle Scholar
  58. Jin Y Yen. 1971. Finding the k-shortest loopless paths in a network. Manegement Science (1971).Google ScholarGoogle Scholar
  59. Juan Yin, Yuan Cao, Yu-Huai Li, Sheng-Kai Liao, Zhang, Ji-Gang Ren, Wen-Qi Cai, Wei-Yue Liu, Bo Li, Hui Dai, Guang-Bing Li, Qi-Ming Lu, Yun-Hong Gong, Yu Xu, Shuang-Lin Li, Feng-Zhi Li, Ya-Yun Yin, Zi-Qing Jiang, Ming Li, Jian-Jun Jia, Ge Ren, Dong He, Yi-Lin Zhou, Xiao-Xiang Zhang, Na Wang, Xiang Chang, Zhen-Cai Zhu, Nai-Le Liu, Yu-Ao Chen, Chao-Yang Lu, Rong Shu, Cheng-Zhi Peng, Jian-Yu Wang, and Jian-Wei Pan. 2017. Satellite-based entanglement distribution over 1200 kilometers. Science (2017).Google ScholarGoogle Scholar
  60. Ye Yu and Chen Qian. 2014. Space Shuffle: A Scalable, Flexible, and High-Bandwidth Data Center Network. In Proceedings of IEEE ICNP.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Concurrent Entanglement Routing for Quantum Networks: Model and Designs

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            SIGCOMM '20: Proceedings of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication
            July 2020
            814 pages
            ISBN:9781450379557
            DOI:10.1145/3387514

            Copyright © 2020 Owner/Author

            This work is licensed under a Creative Commons Attribution International 4.0 License.

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 30 July 2020

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed limited

            Acceptance Rates

            Overall Acceptance Rate554of3,547submissions,16%

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader