skip to main content
research-article
Open Access

Burst photography for high dynamic range and low-light imaging on mobile cameras

Published:05 December 2016Publication History
Skip Abstract Section

Abstract

Cell phone cameras have small apertures, which limits the number of photons they can gather, leading to noisy images in low light. They also have small sensor pixels, which limits the number of electrons each pixel can store, leading to limited dynamic range. We describe a computational photography pipeline that captures, aligns, and merges a burst of frames to reduce noise and increase dynamic range. Our system has several key features that help make it robust and efficient. First, we do not use bracketed exposures. Instead, we capture frames of constant exposure, which makes alignment more robust, and we set this exposure low enough to avoid blowing out highlights. The resulting merged image has clean shadows and high bit depth, allowing us to apply standard HDR tone mapping methods. Second, we begin from Bayer raw frames rather than the demosaicked RGB (or YUV) frames produced by hardware Image Signal Processors (ISPs) common on mobile platforms. This gives us more bits per pixel and allows us to circumvent the ISP's unwanted tone mapping and spatial denoising. Third, we use a novel FFT-based alignment algorithm and a hybrid 2D/3D Wiener filter to denoise and merge the frames in a burst. Our implementation is built atop Android's Camera2 API, which provides per-frame camera control and access to raw imagery, and is written in the Halide domain-specific language (DSL). It runs in 4 seconds on device (for a 12 Mpix image), requires no user intervention, and ships on several mass-produced cell phones.

Skip Supplemental Material Section

Supplemental Material

References

  1. Adams, A., Talvala, E.-V., Park, S. H., Jacobs, D. E., Ajdin, B., Gelfand, N., Dolson, J., Vaquero, D., Baek, J., Tico, M., Lensch, H. P. A., Matusik, W., Pulli, K., Horowitz, M., and Levoy, M. 2010. The Frankencamera: an experimental platform for computational photography. SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Adams, A. 1981. The Print, The Ansel Adams Photography Series 3. New York Graphic Society.Google ScholarGoogle Scholar
  3. Adobe Inc., 2016. Photoshop CC 2015.1.2, http://www.adobe.com/creativecloud.html.Google ScholarGoogle Scholar
  4. Aubry, M., Paris, S., Hasinoff, S. W., Kautz, J., and Du-rand, F. 2014. Fast local laplacian filters: Theory and applications. TOG. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Baker, S., Scharstein, D., Lewis, J. P., Roth, S., Black, M. J., and Szeliski, R. 2011. A database and evaluation methodology for optical flow. IJCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bennett, E. P., and McMillan, L. 2005. Video enhancement using per-pixel virtual exposures. SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Brox, T., and Malik, J. 2011. Large displacement optical flow: Descriptor matching in variational motion estimation. TPAMI. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Dabov, K., Foi, A., and Egiazarian, K. 2007. Video denoising by sparse 3D transform-domain collaborative filtering. EUSIPCO.Google ScholarGoogle Scholar
  9. Dabov, K., Foi, A., Katkovnik, V., and Egiazarian, K. 2007. Image denoising by sparse 3-D transform-domain collaborative filtering. TIP. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Debevec, P. E., and Malik, J. 1997. Recovering high dynamic range radiance maps from photographs. SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Delbracio, M., and Sapiro, G. 2015. Hand-held video deblur-ring via efficient fourier aggregation. TCI.Google ScholarGoogle Scholar
  12. Donoho, D. L. 1995. De-noising by soft-thresholding. IEEE Transactions on Information Theory 41, 3, 613--627. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. DxO Inc., 2015. Google Nexus 6P review, http://www.dxomark.com/Mobiles.Google ScholarGoogle Scholar
  14. Farbman, Z., Fattal, R., and Lischinski, D. 2011. Convolution pyramids. SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Farnebäck, G. 2002. Polynomial Expansion for Orientation and Motion Estimation. PhD thesis, Linköping University, Sweden.Google ScholarGoogle Scholar
  16. Farsiu, S., Elad, M., and Milanfar, P. 2006. Multi-frame demosaicing and super-resolution of color images. TIP. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Frigo, M., and Johnson, S. G. 2005. The design and implementation of FFTW3. Proc. IEEE.Google ScholarGoogle Scholar
  18. Gallo, O., and Sen, P. 2016. Stack-based algorithms for HDR capture and reconstruction. In High Dynamic Range Video: From Acquisition, to Display and Applications, F. Dufaux, P. L. Callet, R. K. Mantiuk, and M. Mrak, Eds. Academic Press, ch. 3, 85--119.Google ScholarGoogle Scholar
  19. Google Inc., 2016. Android Camera2 API, http://developer.android.com/reference/android/hardware/camera2/package-summary.html.Google ScholarGoogle Scholar
  20. Google Inc., 2016. HDR+ burst photography dataset, http://www.hdrplusdata.org.Google ScholarGoogle Scholar
  21. Gunturk, B., Glotzbach, J., Altunbasak, Y., Schafer, R., and Mersereau, R. 2005. Demosaicking: color filter array interpolation. IEEE Signal Processing Magazine.Google ScholarGoogle Scholar
  22. Hasinoff, S. W., Durand, F., and Freeman, W. T. 2010. Noise-optimal capture for high dynamic range photography. CVPR.Google ScholarGoogle Scholar
  23. Healey, G., and Kondepudy, R. 1994. Radiometric CCD camera calibration and noise estimation. TPAMI 16, 3, 267--276. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Heide, F., Steinberger, M., Tsai, Y.-T., Rouf, M., Pajk, D., Reddy, D., Gallo, O., Liu, J., Heidrich, W., Egiazarian, K., Kautz, J., and Pulli, K. 2014. FlexISP: A flexible camera image processing framework. SIGGRAPH Asia. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Horn, B. K. P., and Schunk, B. G. 1981. Determining optical flow. Artificial Intelligence. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Joshi, N., and Cohen, M. F. 2010. Seeing Mt. Rainier: Lucky imaging for multi-image denoising, sharpening, and haze removal. ICCP.Google ScholarGoogle Scholar
  27. Kim, S. J., Lin, H. T., Lu, Z., Süsstrunk, S., Lin, S., and Brown, M. S. 2012. A new in-camera imaging model for color computer vision and its application. TPAMI. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Kokaram, A. C. 1993. Motion picture restoration. PhD thesis, Churchill College, University of Cambridge. Section 8.1.Google ScholarGoogle Scholar
  29. Levoy, M. 2010. Experimental platforms for computational photography. IEEE CG&A 30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Lewis, J. 1995. Fast normalized cross-correlation. Vision interface.Google ScholarGoogle Scholar
  31. Light, 2016. Light L16 camera, https://light.co/camera.Google ScholarGoogle Scholar
  32. Liu, C., Yuen, J., and Torralba, A. 2011. Sift flow: Dense correspondence across scenes and its applications. TPAMI. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Liu, Z., Yuan, L., Tang, X., Uyttendaele, M., and Sun, J. 2014. Fast burst images denoising. SIGGRAPH Asia. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Lucas, B. D., and Kanade, T. 1981. An iterative image registration technique with an application to stereo vision. IJCAI. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Mäkitalo, M., and Foi, A. 2013. Optimal inversion of the generalized Anscombe transformation for Poisson-Gaussian noise. TIP. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Martinec, E., 2008. Noise, dynamic range and bit depth in digital SLRs, http://theory.uchicago.edu/~ejm/pix/20d/tests/noise.Google ScholarGoogle Scholar
  37. Menze, M., and Geiger, A. 2015. Object scene flow for autonomous vehicles. CVPR.Google ScholarGoogle Scholar
  38. Mertens, T., Kautz, J., and Reeth, F. V. 2007. Exposure fusion. Pacific Graphics. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Petschnigg, G., Szeliski, R., Agrawala, M., Cohen, M., Hoppe, H., and Toyama, K. 2004. Digital photography with flash and no-flash image pairs. SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Ragan-Kelley, J., Adams, A., Paris, S., Levoy, M., Amarasinghe, S., and Durand, F. 2012. Decoupling algorithms from schedules for easy optimization of image processing pipelines. SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Reinhard, E., Ward, G., Pattanaik, S. N., Debevec, P. E., and Heidrich, W. 2010. High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting. Academic Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Stone, H. S., Orchard, M. T., Chang, E.-C., and Martucci, S. 2001. A fast direct Fourier-based algorithm for subpixel registration of images. TGRS.Google ScholarGoogle Scholar
  43. Tao, M. W., Bai, J., Kohli, P., and Paris, S. 2012. Simple-flow: A non-iterative, sublinear optical flow algorithm. Computer Graphics Forum (Eurographics 2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Telleen, J., Sullivan, A., Yee, J., Wang, O., Gunawardane, P., Collins, I., and Davis, J. 2007. Synthetic shutter speed imaging. Computer Graphics Forum.Google ScholarGoogle Scholar
  45. Wiegand, T., Sullivan, G. J., Bjøntegaard, G., and Luthra, A. 2003. Overview of the H.264/AVC video coding standard. TCSVT. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Wilburn, B., Joshi, N., Vaish, V., Talvala, E.-V., Antunez, E., Barth, A., Adams, A., Horowitz, M., and Levoy, M. 2005. High performance imaging using large camera arrays. SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Yamaguchi, K., McAllester, D., and Urtasun, R. 2014. Efficient joint segmentation, occlusion labeling, stereo and flow estimation. ECCV.Google ScholarGoogle Scholar
  48. Zhang, L., Deshpande, A., and Chen, X. 2010. Denoising vs. deblurring: HDR imaging techniques using moving cameras. CVPR.Google ScholarGoogle Scholar

Index Terms

  1. Burst photography for high dynamic range and low-light imaging on mobile cameras

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 35, Issue 6
        November 2016
        1045 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2980179
        Issue’s Table of Contents

        Copyright © 2016 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 5 December 2016
        Published in tog Volume 35, Issue 6

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader