skip to main content
research-article

RF doppler shift-based mobile sensor tracking and navigation

Published:20 August 2010Publication History
Skip Abstract Section

Abstract

Mobile wireless sensors require position updates for tracking and navigation. We present a localization technique that uses the Doppler shift in radio transmission frequency observed by stationary sensors. We consider two scenarios. In the first, the mobile node is carried by a person. In the second, the mobile node controls a robot. In both approaches the mobile node transmits an RF signal, and infrastructure nodes measure the Doppler-shifted frequency. Such measurements enable us to calculate the position and velocity of the mobile transmitter. Our experimental results demonstrate that this technique is viable and accurate for resource-constrained mobile sensor tracking and navigation.

References

  1. Amundson, I., Koutsoukos, X., and Sallai, J. 2008. Mobile sensor localization and navigation using RF doppler shifts. In Proceedings of the 1st ACM International Workshop on Mobile Entity Localization and Tracking in GPS-less Environments (MELT). Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Amundson, I., Kushwaha, M., and Koutsoukos, X. 2009. On the feasibility of determining angular separation in mobile wireless sensor networks. In Proceedings of the 2nd International Workshop on Mobile Entity Localization and Tracking in GPS-less Environments (MELT). Lecture Notes in Computer Science, vol. 5801, Springer, Berlin, Germany. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bahl, P. and Padmanabhan, V. N. 2000. Radar: An in-building RF-based user-location and tracking system. In Proceedings of IEEE INFOCOM. vol. 2, 77584.Google ScholarGoogle Scholar
  4. Bergbreiter, S. and Pister, K. S. J. 2003. CotsBots: An off-the-shelf platform for distributed robotics. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Google ScholarGoogle Scholar
  5. Brooks, R. R., Griffin, C., and Friedlander, D. S. 2002. Self-organized distributed sensor network entity tracking. Int. J. High Perform. Comput. Appl. 16, 3.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Brooks, R. R., Ramanthan, P., and Sayeeed, A. 2003. Distributed target classification and tracking in sensor networks. Proc. IEEE 91, 8, 1163--1171.Google ScholarGoogle ScholarCross RefCross Ref
  7. Butler, Z., Corke, P., Peterson, R., and D.Rus. 2004. Networked cows: Virtual fences for controlling cows. In Proceedings of the MobiSys Workshop on Applications of Mobile Embedded Systems. (WAMES).Google ScholarGoogle Scholar
  8. Chan, Y. and Towers, J. 1992. Passive localization from doppler-shifted frequency measurements. IEEE Trans. Signal Process. 40, 10. 2594--2598.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chan, Y.-T. and Jardine, F. 1990. Target localization and tracking from doppler-shift measurements. IEEE J. Oceanic Eng. 15, 3, 251--257.Google ScholarGoogle ScholarCross RefCross Ref
  10. Chang, C.-B. and Tabaczynski, J. 1984. Application of state estimation to target tracking. IEEE Trans. Aut. Contr. 29--2, 98--109.Google ScholarGoogle Scholar
  11. Chang, H.-l., Tian, J.-b., Lai, T.-T., Chu, H.-H., and Huang, P. 2008. Spinning beacons for precise indoor localization. In Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems (SenSys). Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Dantu, K., Rahimi, M., Shah, H., Babel, S., Dhariwal, A., and Sukhatme, G. S. 2005. robomote: Enabling mobility in sensor networks. In Proceedings of the 4th International Symposium on Information Processing in Sensor Networks (IPSN). Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Dutta, P., Grimmer, M., Arora, A., Bibyk, S., and Culler, D. 2005. Design of a wireless sensor network platform for detecting rare, random, and ephemeral events. In Proceedings of IPSN/SPOTS. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Estrin, D., Govindan, R., Heidemann, J., and Kumar, S. 1999. Next century challenges: Scalable coordination in sensor networks. In Proceedings of MobiCom. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Fang, L., Antsaklis, P. J., Montestruque, L., Mcmickell, M. B., Lemmon, M., Sun, Y., Fang, H., Koutroulis, I., Haenggi, M., Xie, M., and Xie, X. 2005. Design of a wireless assisted pedestrian dead reckoning system: The NavMote experience. IEEE Trans. Instrument. Measurem. 54, 6, 2342--2358.Google ScholarGoogle ScholarCross RefCross Ref
  16. Friedman, J., Lee, D. C., Tsigkogiannis, I., Wong, S., Chao, D., Levin, D., Kaisera, W. J., and Srivastava, M. B. 2005. Ragobot: A new platform for wireless mobile sensor networks. In Proceedings of the International Conference on Distributed Computing in Sensor Systems (DCOSS). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Gandham, S., Dawande, M., Prakash, R., and Venkatesan, S. 2003. Energy efficient schemes for wireless sensor networks with multiple mobile base stations. In Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM).Google ScholarGoogle Scholar
  18. Girod, L., Lukac, M., Trifa, V., and Estrin, D. 2006. The design and implementation of a self-calibrating acoustic sensing platform. In Proceedings of ACM SenSys. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Gu, L., Jia, D., Vicaire, P., Yan, T., Luo, L., Tirumala, A., Cao, Q., Stankovic, J. A., Abdelzaher, T., and Krogh, B. 2005. Lightweight detection and classification for wireless sensor networks in realistic environments. In Proceedings of ACM SenSys. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Gustafsson, F. and Gunnarsson, F. 2005. Mobile positioning using wireless networks. IEEE Signal Process. Mag. 22, 4, 41--53.Google ScholarGoogle ScholarCross RefCross Ref
  21. Wener-Allen, G., Johnson, J., Ruiz, M., Lees, J., and Welsh, M. 2005. Monitoring volcanic eruptions with a wireless sensor networks. In Proceedings of the 2nd European Workshop on Wireless Sensor Networks. (EWSN).Google ScholarGoogle Scholar
  22. Hazas, M., Scott, J., and Krumm, J. 2004. Location-aware computing comes of age. IEEE Comput. 37, 2, 95--97. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Hightower, J. and Borriello, G. 2001. Location systems for ubiquitous computing. IEEE Comput. 34, 8, 57--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Hill, J. and Culler, D. 2002. Mica: a wireless Platform for deeply embedded networks. IEEE Micro 22, 6, 12--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., and Pister, K. 2000. System architecture directions for networked sensors. In Proceedings of ASPLOS-IX. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Hu, L. and Evans, D. 2004. Localization for mobile sensor networks. In Proceedings of MobiCom. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L., and Rubenstein, D. 2002. Energy-efficient computing for wildlife tracking: Design tradeoffs and early experiences with zebranet. In Proceedings of ASPLOS-X. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Kalman, R. E. 1960. A new approach to linear filtering and prediction problems. Trans. ASME—J. Basic Eng. 82 (Series D), 35--45.Google ScholarGoogle Scholar
  29. Kusý, B., Balogh, G., Lédeczi, A., Sallai, J., and Maróti, M. 2007a. inTrack: High precision tracking of mobile sensor nodes. In Proceedings of the 4th European Workshop on Wireless Sensor Network. (EWSN). Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Kusý, B., Balogh, G., Völgyesi, P., Sallai, J., Nádas, A., Lédeczi, A., Maróti, M., and Meertens, L. 2006. Node-density independent localization. In Proceedings of IPSN/SPOTS. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Kusý, B., Dutta, P., Levis, P., Maróti, M., Lédeczi, A., and Culler, D. 2006b. Elapsed time on arrival: a simple and versatile primitive for canonical time synchronization services. Int. J. Ad Hoc Ubiq. Comput. 2, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Kusý, B., Lédeczi, A., and Koutsoukos, X. 2007b. Tracking mobile nodes using RF doppler shifts. In Proceedings of the 5th International Conference on Embedded Networked Sensor Systems (SenSys). ACM, New York, NY, 29--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Kusý, B., Sallai, J., Balogh, G., Lédeczi, A., Protopopescu, V., Tolliver, J., DeNap, F., and Parang, M. 2007c. Radio interferometric tracking of mobile wireless nodes. In Proceedings of MobiSys. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Ledeczi, A., Volgyesi, P., Sallai, J., and Thibodeaux, R. 2008. A novel RF ranging method. In Proceedings of the 6th Workshop on Intelligent Solutions in Embedded Systems (WISES).Google ScholarGoogle Scholar
  35. Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., Gay, D., Hill, J., Welsh, M., Brewer, E., and Culler, D. 2005. Tinyos: An operating system for wireless sensor networks. Ambient Intelligence. Sprinter-Verlag, Berlin, Germany.Google ScholarGoogle Scholar
  36. Li, X. R. and Jilkov, V. P. 2004. A survey of maneuvering target tracking: approximation techniques for nonlinear filtering. In Proceedings of the SPIE Conference on Signal and Data Processing of Small Targets. 537--550.Google ScholarGoogle Scholar
  37. Madsen, K., Nielsen, H., and Tingleff, O. 2004. Methods for nonlinear least squares problems. Lecture Note. Technical University of Denmark Lyngby, Denmark.Google ScholarGoogle Scholar
  38. Maróti, M., Kusý, B., Balogh, G., Völgyesi, P., Nádas, A., Molnár, K., Dóra, S., and Lédeczi, A. 2005. Radio interferometric geolocation. In Proceedings of ACM SenSys. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Moore, D., Leonard, J., Rus, D., and Teller, S. 2004. Robust distributed network localization with noisy range measurements. In Proceedings of ACM Sensys. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Shah, R., Roy, S., Jain, S., and Brunette, W. 2003. Data mules: Modeling a three-tier architecture for sparse sensor networks. In Proceedings of the 1st IEEE International Workshop on Sensor Network Protocols and Applications.Google ScholarGoogle Scholar
  41. Smith, A., Balakrishnan, H., Goraczko, M., and Priyantha, N. 2004. Tracking moving devices with the Cricket location system. In Proceedings of MobiSys. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Taylor, C., Rahimi, A., Bachrach, J., Shrobe, H., and Grue, A. 2006. Simultaneous localization, calibration, and tracking in an ad hoc sensor network. In Proceedings of IPSN. 27--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Wang, G., Cao, G., Porta, T., and Zhang, W. 2005. Sensor relocation in mobile sensor networks. In Proceedings of the IEEE INFOCOM.Google ScholarGoogle Scholar
  44. Welch, G. and Bishop, G. 2004. An introduction to the Kalman filter. Tech. rep. TR 95-041. Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Xu, N., Rangwala, S., Chintalapudi, K. K., Ganesan, D., Broad, A., Govindan, R., and Estrin, D. 2004. A wireless sensor network for structural monitoring. In Proceedings of ACM SenSys. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Zhao, F., Liu, J., Liu, J., Guibas, L., and Reich, J. 2003. Collaborative signal and information processing: An information directed approach. In Proceedings of IEEE 91, 8, 1199--1209.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. RF doppler shift-based mobile sensor tracking and navigation

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Sensor Networks
        ACM Transactions on Sensor Networks  Volume 7, Issue 1
        August 2010
        297 pages
        ISSN:1550-4859
        EISSN:1550-4867
        DOI:10.1145/1806895
        Issue’s Table of Contents

        Copyright © 2010 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 20 August 2010
        • Revised: 1 November 2009
        • Accepted: 1 November 2009
        • Received: 1 March 2009
        Published in tosn Volume 7, Issue 1

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader