skip to main content
research-article
Free Access

Energy-efficient algorithms

Published:01 May 2010Publication History
Skip Abstract Section

Abstract

Algorithmic solutions can help reduce energy consumption in computing environs.

References

  1. http://www.microsoft.com/whdc/system/pnppwr/powermgmt/default.mspxGoogle ScholarGoogle Scholar
  2. Albers, S., Fujiwara, H. Energy-efficient algorithms for flow time minimization. ACM Trans. Algorithms 3 (2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Albers, S., Müller, F., Schmelzer, S. Speed scaling on parallel processors. In Proceedings of the 19th ACM Symposium on Parallelism in Algorithms and Architectures (2007), 289--298. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Ambühl, C. An optimal bound for the MST algorithm to compute energy efficient broadcast trees in wireless networks. In Proceedings of the 32nd International Colloquium on Automata, Languages and Programming (2005), Springer LNCS 3580, 1139--1150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Augustine, J., Irani, S., Swamy, C. Optimal power-down strategies. SIAM J. Comput. 37 (2008), 1499--1516. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bansal, N., Bunde, D.P., Chan, H.-L., Pruhs K. Average rate speed scaling. In Proceedings of the 8th Latin American Symposium on Theoretical Informatics (2008), Springer LNCS 4957, 240--251. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bansal, N., Chan, H.-L., Lam, T.-W., Lee, K.-L. Scheduling for speed bounded processors. In Proceedings of the 35th International Colloquium on Automata, Languages and Programming (2008), Springer LNCS 5125, 409--420. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bansal, N., Chan, H.-L., Pruhs, K. Speed scaling with an arbitrary power function. In Proceedings of the 20th ACM-SIAM Symposium on Discrete Algorithm (2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bansal, N., Kimbrel, T., Pruhs, K. Speed scaling to manage energy and temperature. J. ACM 54 (2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Bansal, N., Pruhs, K., Stein, C. Speed scaling for weighted flow time. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (2007), 805--813. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Baptiste, P., Chrobak M., Dürr C. Polynomial time algorithms for minimum energy scheduling. In Proceedings of the 15th Annual European Symposium on Algorithms (2007), Springer LNCS 4698, 136--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Barroso, L.A. The price of performance. ACM Queue 3 (2005). Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Becchetti, L., Korteweg, P., Marchetti-Spaccamela, A., Skutella, M., Stougie, L., Vitaletti, A. Latency constrained aggregation in sensor networks. In Proceedings of the 14th Annual European Symposium on Algorithms (2006), Springer LNCS 4168, 88--99. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Benini, L., Bogliolo, A., De Micheli, G. A survey of design techniques for system-level dynamic power management. IEEE Trans. VLSI Syst. 8 (2000), 299--316. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Bunde, D.P. Power-aware scheduling for makespan and flow. In Proceedings of the 18th Annual ACM Symposiun on Parallel Algorithms and Architectures (2006), 190--196. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Caragiannis, I., Flammini, M., Moscardelli, L. An exponential improvement on the MST heuristic for minimum energy broadcasting in ad hoc wireless networks. In Proceedings of the 34th International Colloquium on Automata, Languages and Programming (2007), Springer LNCS 4596, 447--458. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Chan, H.-L., Chan, W.-T., Lam, T.-W., Lee, K.-L., Mak K.-S., Wong P.W.H. Energy efficient online deadline scheduling. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (2007), 795--804. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Chan, H.-L., Edmonds, J., Lam, T.-W, Lee, L.-K., Marchetti-Spaccamela, A., Pruhs, K. Nonclairvoyant speed scaling for flow and energy. In Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science (2009), 255--264.Google ScholarGoogle Scholar
  19. Clementi, A.E.F., Crescenzi, P., Penna, P., Rossi, G., Vocca, P. On the complexity of computing minimum energy consumption broadcast subgraphs. In Proceedings of the 18th International Symposium on Theoretical Aspects of Computer Science (2001), Springer 2010, 121--131. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C. Introduction to Algorithms, MIT Press and McGraw-Hill, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Demaine, E.D., Ghodsi, M., Hajiaghayi, M.T., Sayedi-Roshkhar, A.S., Zadimoghaddam, M. Scheduling to minimize gaps and power consumption. In Proceedings of the 19th Annual ACM Symposium on Parallel Algorithms and Architectures (2007), 46--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Flammini, M., Klasing, R., Navarra, A., Perennes, S. Improved approximation results for the minimum energy broadcasting problem. Algorithmica 49 (2007), 318--336. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Irani, S., Shukla, S.K., Gupta, R. Algorithms for power savings. ACM Trans. Algorithms 3 (2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Irani, S., Shukla, S.K., Gupta, R.K. Online strategies for dynamic power management in systems with multiple power-saving states. ACM Trans. Embedded Comput. Syst. 2 (2003), 325--346. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Irani, S., Singh, G., Shukla, S.K., Gupta, R.K. An overview of the competitive and adversarial approaches to designing dynamic power management strategies. IEEE Trans. VLSI Syst. 13 (2005), 1349--1361. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Irani, S., Karlin, A.R. Online computation. In Approximation Algorithms for NP-Hard Problems. Hochbaum D. ed. PWS Publishing Company, 1997, 521--564. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Irani, S., Pruhs, K. Algorithmic problems in power management. SIGACT News 36 (2005), 63--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Karlin, A.R., Manasse, M.S., McGeoch, L.A, Owicki, S.S. Competitive randomized algorithms for nonuniform problems. Algorithmica 11 (1994), 542--571.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Korteweg, P., Marchetti-Spaccamela, A., Stougie, L., Vitaletti, A. Data aggregation in sensor networks: Balancing communication and delay costs. In Proceedings of the 14th International Colloquium on Structural Information and Communication Complexity (2007), Springer LNCS 4474, 139--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Lam, T.-W., Lee, L.-K., To, I.K.-K., Wong, P.W.H. Energy efficient deadline scheduling in two processor systems. In Proceedings of the 18th International Symposium on Algorithms and Computation (2007), Springer LNCS 4835, 476--487. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Lam, T.-W., Lee, L.-K., To, I.K.-K., Wong, P.W.H. Competitive non-migratory scheduling for flow time and energy. In Proceedings of the 20th Annual ACM Symposium on Parallel Algorithms and Architectures (2008), 256--264. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Lam, T.-W., Lee, L.-K., To, I.K.-K., Wong, P.W.H. Speed scaling functions for flow time scheduling based on active job count. In Proceedings of the 16th Annual European Symposium on Algorithms (2008), Springer LNCS 5193, 647--659. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Li, M., Liu, B.J., Yao, F.F. Min-energy voltage allocation for tree-structured tasks. J. Comb. Optim. 11 (2006), 305--319.Google ScholarGoogle ScholarCross RefCross Ref
  34. Li, M., Yao, A.C., Yao, F.F. Discrete and continuous min-energy schedules for variable voltage processors. In Proceedings of the National Academy of Sciences USA 103 (2006), 3983--3987.Google ScholarGoogle ScholarCross RefCross Ref
  35. Li, M., Yao, F.F. An efficient algorithm for computing optimal discrete voltage schedules. SIAM J. Comput. 35 (2005), 658--671. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Pruhs, K., van Stee, R., Uthaisombut, P. Speed scaling of tasks with precedence constraints. Theory Comput. Syst. 43 (2008), 67--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Pruhs, K., Uthaisombut, P., Woeginger, G.J. Getting the best response for your erg. ACM Trans. Algorithms 4 (2008). Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Sleator, D.D., Tarjan, R.E. Amortized efficiency of list update and paging rules. Comm. ACM 28 (1985), 202--208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Wan, P.-J., Calinescu, G., Li, X.-Y., Frieder, O. Minimum-energy broadcasting in static ad hoc wireless networks. Wireless Netw. 8 (2002), 607--617. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Yao, F.F., Demers, A.J., Shenker, S. A scheduling model for reduced CPU energy. In Proceedings of the 36th IEEE Symposium on Foundations of Computer Science (1995), 374--382. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Energy-efficient algorithms

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image Communications of the ACM
        Communications of the ACM  Volume 53, Issue 5
        May 2010
        145 pages
        ISSN:0001-0782
        EISSN:1557-7317
        DOI:10.1145/1735223
        Issue’s Table of Contents

        Copyright © 2010 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 May 2010

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Popular
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format