skip to main content
research-article

Real-time motion retargeting to highly varied user-created morphologies

Published:01 August 2008Publication History
Skip Abstract Section

Abstract

Character animation in video games---whether manually keyframed or motion captured---has traditionally relied on codifying skeletons early in a game's development, and creating animations rigidly tied to these fixed skeleton morphologies. This paper introduces a novel system for animating characters whose morphologies are unknown at the time the animation is created. Our authoring tool allows animators to describe motion using familiar posing and key-framing methods. The system records the data in a morphology-independent form, preserving both the animation's structural relationships and its stylistic information. At runtime, the generalized data are applied to specific characters to yield pose goals that are supplied to a robust and efficient inverse kinematics solver. This system allows us to animate characters with highly varying skeleton morphologies that did not exist when the animation was authored, and, indeed, may be radically different than anything the original animator envisioned.

Skip Supplemental Material Section

Supplemental Material

39.flv

flv

165.5 MB

a27-hecker.mov

mov

56.7 MB

References

  1. Alexander, R. M. 2003. Principles of Animal Locomotion. Princeton University Press.Google ScholarGoogle Scholar
  2. Apple, Inc. 2008. Apple iTunes Smart Playlists. http://www.apple.com/lae/itunes/smartplaylists.html.Google ScholarGoogle Scholar
  3. Autodesk, Inc. 2008. Autodesk Maya. http://www.autodesk.com/maya.Google ScholarGoogle Scholar
  4. Barzel, R., Hughes, J. F., and Wood, D. N. 1996. Plausible motion simulation for computer graphics animation. In Computer Animation and Simulation '96, 183--197. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Barzel, R. 1997. Faking dynamics of ropes and springs. IEEE Comput. Graph. Appl. 17, 3, 31--39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bruderlin, A., and Calvert, T. 1989. Goal-directed dynamic animation of human walking. In Proceedings of ACM SIGGRAPH 89, 233--242. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bruderlin, A., and Calvert, T. 1996. Knowledge-driven, interactive animation of human running. In Proceedings of Graphics Interface (GI'96), 213--221. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Chi, D., Costa, M., Zhao, L., and Badler, N. 2000. The emote model for effort and shape. In Proceedings of ACM SIGGRAPH '00, 173--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Choi, K.-J., and Ko, H.-S. 2000. On-line motion retargeting. Journal of Visualization and Computer Animation 11, 223--243.Google ScholarGoogle ScholarCross RefCross Ref
  10. Desmecht, L., and Dachary, L., 2006. Cal3d animation system. http://home.gna.org/cal3d.Google ScholarGoogle Scholar
  11. Edery, D., Brown, M., Pallister, K., Koster, R., and Muzyka, R., 2007. Sharing control. Game Developers Conference 2007.Google ScholarGoogle Scholar
  12. Girard, M., and Maciejewski, A. 1985. Computational modeling for the computer animation of legged figures. In Proceedings of ACM SIGGRAPH 1985, 263--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Gleicher, M. 1998. Retargeting motion to new characters. In Proceedings of ACM SIGGRAPH 98, Annual Conference Series, ACM SIGGRAPH, 33--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Grochow, K., Martin, S., Hertzmann, A., and Popović, Z. 2004. Style-based inverse kinematics. ACM Transactions on Graphics 23, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Horn, B. K. P. 1990. Relative orientation. International Journal of Computer Vision 4, 59--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Jakobsen, T., 2001. Advanced character physics. Game Developers Conference 2001. http://www.teknikus.dk/tj/gdc2001.htm.Google ScholarGoogle Scholar
  17. Kastenmeier, T., and Vesely, F. J. 1996. Numerical robot kinematics based on stochastic and molecular simulation methods. Robotica 14, 329--337.Google ScholarGoogle ScholarCross RefCross Ref
  18. Klein, C., and Huang, C. 1983. Review of pseudoinverse control for use with kinematically redundant manipulators. IEEE Trans. Systems, Man, and Cybernetics 13, 2 (March/April), 245--250.Google ScholarGoogle Scholar
  19. Kovar, L., and Gleicher, M. 2004. Automated extraction and parameterization of motions in large data sets. ACM Trans. Graph. 23, 3, 559--568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kulpa, R., Multon, F., and Arnaldi, B. 2005. Morphology-independent representation of motions for interactive human-like animation. Computer Graphics Forum, Eurographics 2005 special issue 24, 3, 343--352.Google ScholarGoogle Scholar
  21. Lasseter, J. 1987. Principles of traditional animation applied to 3d computer animation. In Proceedings of ACM SIGGRAPH '87, 35--44. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lee, J., and Shin, S. Y. 1999. A hierarchical approach to interactive motion editing for human-like figures. In Proceedings of ACM SIGGRAPH 99, 39--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Meredith, M., and Maddock, S. 2004. Using a half-jacobian for real-time inverse kinematics. In Procedings of The 5th International Conference on Computer Games: Artificial Intelligence, Design and Education, 81--88.Google ScholarGoogle Scholar
  24. Mizuguchi, M., Buchanan, J., and Calvert, T. 2001. Data driven motion transitions for interactive games. In Eurographics 2001 Short Presentations.Google ScholarGoogle Scholar
  25. Mozilla Foundation. 2008. Mozilla Thunderbird Message Filters. Tutorial at http://opensourcearticles.com/thunderbird_15/english/part_07.Google ScholarGoogle Scholar
  26. Muratori, C., Roberts, J., Forsyth, T., and Moore, D., 2008. Granny 3d animation sdk. http://www.radgametools.com/granny/sdk.html.Google ScholarGoogle Scholar
  27. Neff, M., and Fiume, E. 2005. Aer: aesthetic exploration and refinement for expressive character animation. In SCA '05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, 161--170. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. O'Brien, J. F., Zordan, V. B., and Hodgins, J. K. 2000. Combining active and passive simulations for secondary motion. IEEE Comput. Graph. Appl. 20, 4, 86--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Popović, Z., and Witkin, A. 1999. Physically based motion transformation. In Proceedings of ACM SIGGRAPH 99, 11--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Rotenberg, S., 2004. Locomotion. UCSD CSE169: Computer Animation Lecture Notes. Available at http://graphics.ucsd.edu/courses/cse169_w04/CSE169_13.ppt.Google ScholarGoogle Scholar
  31. Ryckaert, J., Ciccotti, G., and Berendsen, H. 1977. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of Computational Physics 23, 327--341.Google ScholarGoogle ScholarCross RefCross Ref
  32. Shin, H. J., Lee, J., Gleicher, M., and Shin, S. Y. 2001. Computer puppetry: an importance-based approach. ACM Transactions on Graphics 20, 2 (Apr.), 67--94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Sun, H. C., and Metaxas, D. N. 2001. Automating gait generation. In Proceedings of ACM SIGGRAPH '01, 261--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Tang, W., Cavazza, M., Mountain, D., and Earnshaw, R. 1999. A constrained inverse kinematics technique for realtime motion capture animation. The Visual Computer 15, 7--8 (November), 413--425.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Thomas, F., and Johnston, O. 1981. Disney Animation, The Illusion of Life. Abbeville Press.Google ScholarGoogle Scholar
  36. Tolani, D., Goswami, A., and Badler, N. I. 2000. Realtime inverse kinematics techniques for anthropomorphic limbs. Graphical models 62, 5, 353--388. Google ScholarGoogle Scholar
  37. Welman, C. 1993. Inverse Kinematics and Geometric Constraints for Articulated Figure Manipulation. Master's thesis, Simon Fraser University.Google ScholarGoogle Scholar
  38. Willmott, A., Quigley, O., Choy, L., Sharp, B., and Ingram, R., 2007. Rigblocks: Player-deformable objects. SIGGRAPH 2007 Sketches. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Wright, W., 2005. The future of content. Game Developers Conference 2005, March. http://video.google.com/videoplay?docid=-262774490184348066.Google ScholarGoogle Scholar
  40. Yan, Y., Ohnishi, K., and Fukuda, T. 1999. Decentralized control of redundant manipulators: a control scheme that generates a cyclic solution to the inverse problem. In Proceedings of 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 404--409.Google ScholarGoogle Scholar
  41. Zhao, J., and Badler, N. 1994. Inverse kinematics positioning using nonlinear programming for highly articulated figures. ACM Transactions on Graphics 13, 4 (Oct.), 313--336. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Real-time motion retargeting to highly varied user-created morphologies

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader