skip to main content
survey

A Survey on Concept Drift in Process Mining

Authors Info & Claims
Published:08 October 2021Publication History
Skip Abstract Section

Abstract

Concept drift in process mining (PM) is a challenge as classical methods assume processes are in a steady-state, i.e., events share the same process version. We conducted a systematic literature review on the intersection of these areas, and thus, we review concept drift in PM and bring forward a taxonomy of existing techniques for drift detection and online PM for evolving environments. Existing works depict that (i) PM still primarily focuses on offline analysis, and (ii) the assessment of concept drift techniques in processes is cumbersome due to the lack of common evaluation protocol, datasets, and metrics.

References

  1. Rafael Accorsi and Thomas Stocker. 2012. Discovering workflow changes with time-based trace clustering. In Proceedings of the Data-Driven Process Discovery and Analysis. Springer, Berlin, 154–168.Google ScholarGoogle ScholarCross RefCross Ref
  2. Charu C. Aggarwal and Chandan K. Reddy (Eds.). 2014. Data Clustering Algorithms and Apllications. CRC Press, Boca Raton, FL.Google ScholarGoogle Scholar
  3. Mihael Ankerst, Markus M. Breunig, Hans Peter Kriegel, and Jörg Sander. 1999. OPTICS: Ordering points to identify the clustering structure. SIGMOD Record (ACM Special Interest Group on Management of Data) 28, 2 (Jun. 1999), 49–60.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Sylvio Barbon Junior, Gabriel Marques Tavares, Victor G. Turrisi da Costa, Paolo Ceravolo, and Ernesto Damiani. 2018. A framework for human-in-the-loop monitoring of concept-drift detection in event log stream. In Companion Proceedings of the The Web Conference. Vol. 2, ACM, 319–326.Google ScholarGoogle Scholar
  5. A. Batyuk, V. V. Oityshyn, and V. Verhun. 2018. Software architecture design of the real- time processes monitoring platform. In Proceedings of the 2018 IEEE 2nd International Conference on Data Stream Mining Processing. IEEE, 98–101.Google ScholarGoogle Scholar
  6. Anatoliy Batyuk and Volodymyr Voityshyn. 2020. Streaming process discovery method for semi-structured business processes. In Proceedings of the 2020 IEEE 3rd International Conference on Data Stream Mining and Processing. IEEE, 444–448.Google ScholarGoogle ScholarCross RefCross Ref
  7. Albert Bifet and Ricard Gavaldà. 2007. Learning from time-changing data with adaptive windowing. In Proceedings of the 7th SIAM International Conference on Data Mining. Springer, 443–448.Google ScholarGoogle ScholarCross RefCross Ref
  8. R. P. Jagadeesh Chandra Bose and Wil M. P. P van der Aalst. 2010. Trace clustering based on conserved patterns: Towards achieving better process models. In Lecture Notes in Business Information Processing. S. Rinderle-Ma, S. Sadiq, and F. Leymann (Eds.), Vol. 43, Springer, Berlin, 170–181.Google ScholarGoogle Scholar
  9. R. P. Jagadeesh Chandra Bose, Wil M. P. van der Aalst, Indrė Žliobaitė, and Mykola Pechenizkiy. 2011. Handling concept drift in process mining. In Advanced Information Systems Engineering, Haralambos Mouratidis and Colette Rolland (Eds.), Springer, Berlin, 391–405.Google ScholarGoogle Scholar
  10. R. P. Jagadeesh Chandra Bose, Wil M. P. van der Aalst, Indre Zliobaite, and Mykola Pechenizkiy. 2014. Dealing with concept drifts in process mining. IEEE Transactions on Neural Networks and Learning Systems 25, 1 (Jan. 2014), 154–171.Google ScholarGoogle Scholar
  11. Markus M. Breuniq, Hans Peter Kriegel, Raymond T. Ng, and Jörg Sander. 2000. LOF: Identifying density-based local outliers. SIGMOD Record (ACM Special Interest Group on Management of Data) 29, 2 (Jun. 2000), 93–104.Google ScholarGoogle Scholar
  12. Tobias Brockhoff, Merih Seran Uysal, and Wil M. P. van der Aalst. 2020. Time-aware concept drift detection using the earth mover’s distance. In Proceedings of the 2nd International Conference on Process Mining. IEEE, 33–40.Google ScholarGoogle Scholar
  13. Andrea Burattin, Marta Cimitile, and Fabrizio Maria Maggi. 2015. Lights, camera, action! Business process movies for online process discovery. In Business Process Management Workshops. Fabiana Fournier, and Jan Mendling (Eds.), Springer, 408–419.Google ScholarGoogle ScholarCross RefCross Ref
  14. A. Burattin, M. Cimitile, F. M. Maggi, and A. Sperduti. 2015. Online discovery of declarative process models from event streams. IEEE Transactions on Services Computing 8, 6 (2015), 833–846.Google ScholarGoogle ScholarCross RefCross Ref
  15. A. Burattin, A. Sperduti, and W. M. P. van der Aalst. 2014. Control-flow discovery from event streams. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation. IEEE, 2420–2427.Google ScholarGoogle Scholar
  16. Giorgio C. Buttazzo. 2011. Hard Real-Time Computing Systems (3rd ed.). Real-Time Systems Series, Vol. 24. Springer, New York, NY. 1689–1699Google ScholarGoogle Scholar
  17. Feng Cao, Martin Estert, Weining Qian, and Aoying Zhou. 2006. Density-based clustering over an evolving data stream with noise. In Proceedings of the 6th SIAM International Conference on Data Mining. SIAM, 328–339.Google ScholarGoogle ScholarCross RefCross Ref
  18. Josep Carmona and Ricard Gavald. 2012. Online techniques for dealing with concept drift in process mining. In Proceedings of the 11th International Conference on Advances in Intelligent Data Analysis. Springer, Berlin, 90–102.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Gabriel Marques Tavares, Sylvio Barbon Jr., and Paolo Ceravolo. 2019. Synthetic Event Streams. IEEE Dataport. DOI:https://dx.doi.org/10.21227/2kxd-m509Google ScholarGoogle Scholar
  20. Paolo Ceravolo, Gabriel Marques Tavares, Sylvio Barbon Junior, and Ernesto Damiani. 2020. Evaluation goals for online process mining: A concept drift perspective. IEEE Transactions on Services Computing (2020), 1–1 . https://ieeexplore.ieee.org/document/9124702.Google ScholarGoogle Scholar
  21. R. Conforti, M. L. Rosa, and A. H. M. t. Hofstede. 2017. Filtering out infrequent behavior from business process event logs. IEEE Transactions on Knowledge and Data Engineering 29, 2 (2017), 300–314.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. A. K. A. De Medeiros, B. F. Van Dongen, W. M. P. Van Der Aalst, and A. J. M. M. Weijters. 2004. Process mining for ubiquitous mobile systems: An overview and a concrete algorithm. Proceedings of the 2nd CAiSE Conference on Ubiquitous Mobile Information and Collaboration Systems. Vol. 3272, 151–165.Google ScholarGoogle Scholar
  23. Gregory Ditzler, Manuel Roveri, Cesare Alippi, and Robi Polikar. 2015. Learning in nonstationary environments: A survey. IEEE Computational Intelligence Magazine 10, 4 (Nov. 2015), 12–25.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Maikel Eck, Xixi Lu, Sander Leemans, and Wil Aalst. 2015. PM2: A process mining project methodology. In Advanced Information Systems Engineering. J. Zdravkovic, M. Kirikova, and P. Johannesson (Eds.), Springer, 297–313.Google ScholarGoogle Scholar
  25. Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. AAAI Press, 226–231.Google ScholarGoogle Scholar
  26. Bin Fan, Dave G. Andersen, Michael Kaminsky, and Michael D. Mitzenmacher. 2014. Cuckoo filter: Practically better than bloom. In Proceedings of the 10th ACM International on Conference on Emerging Networking Experiments and Technologies. Association for Computing Machinery, New York, NY, 75–88.Google ScholarGoogle Scholar
  27. Eibe Frank and Ian H. Witten. 1998. Using a permutation test for attribute selection in decision trees. In Proceedings of the 15th International Conference on Machine Learning. Morgan Kaufmann Publishers, San Francisco, CA, 152–160.Google ScholarGoogle Scholar
  28. João Gama, Indre Zliobaite, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia. 2014. A survey on concept drift adaptation. ACM Computing Surveys 46, 4 (2014), 1–37.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Cleiton dos Santos Garcia, Alex Meincheim, Elio Ribeiro Faria Junior, Marcelo Rosano Dallagassa, Denise Maria Vecino Sato, Deborah Ribeiro Carvalho, Eduardo Alves Portela Santos, and Edson Emilio Scalabrin. 2019. Process mining techniques and applications—A systematic mapping study. Expert Systems with Applications 133 (Nov. 2019), 260–295.https://www.sciencedirect.com/science/article/abs/pii/S0957417419303161.Google ScholarGoogle Scholar
  30. Christian W. Günther and Wil M. P. Van Der Aalst. 2007. Fuzzy mining—Adaptive process simplification based on multi-perspective metrics. In International Conference on Business Process Management. G. Alonso, P. Dadam, and M. Rosemann (Eds.), Vol. 4714, Springer, Berlin, 328–343.Google ScholarGoogle Scholar
  31. Marwan Hassani. 2019. Concept drift detection of event streams using an adaptive window. In Proceedings of the 33rd International European Council for Modelling and Simulation Vol. 33. European Council for Modelling and Simulation, 230–239.Google ScholarGoogle ScholarCross RefCross Ref
  32. Bart Hompes, Wil M. P. van der Aalst, and Prabhakar Dixit. 2017. Detecting changes in process behavior using comparative case clustering. In Proceedings of the International Symposium Data-Driven Process Discovery and Analysis. Vol. 244. Springer, 0–22.Google ScholarGoogle Scholar
  33. Angelo Impedovo, Paolo Mignone, Corrado Loglisci, and Michelangelo Ceci. 2020. Simultaneous process drift detection and characterization with pattern-based change detectors. In International Conference on Discovery Science A. Appice, G. Tsoumakas, Y. Manolopoulos, and S. Matwin (Eds.). Vol. 12323, Springer, 451–467. https://link.springer.com/chapter/10.1007%2F978-3-030-61527-7_30#citeas.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. R. Killick, P. Fearnhead, and I. A. Eckley. 2012. Optimal detection of changepoints with a linear computational cost. Journal of the American Statistical Association 107, 500 (Jan. 2012), 1590–1598.Google ScholarGoogle ScholarCross RefCross Ref
  35. B. Kitchenham and S. Charters. 2007. Guidelines for Performing Systematic Literature Reviews in Software Engineering. Technical Report 3. Keele University and Durham University Joint Report.Google ScholarGoogle Scholar
  36. Angelina Prima Kurniati, Ciarán McInerney, Kieran Zucker, Geoff Hall, David Hogg, and Owen Johnson. 2020. Using a multi-level process comparison for process change analysis in cancer pathways. International Journal of Environmental Research and Public Health 17, 19 (2020), 1–16.Google ScholarGoogle ScholarCross RefCross Ref
  37. Johnson O. Kurniati A. P., McInerney C., Zucker K., Hall G., Hogg D.2019. A multi-level approach for identifying process change in cancer pathways. In International Conference on Business Process Management Workshops. Springer, 595–607.Google ScholarGoogle Scholar
  38. Marcello La Rosa, Hajo A. Reijers, Wil M. P. Van Der Aalst, Remco M. Dijkman, Jan Mendling, Marlon Dumas, and Luciano García-Bañuelos. 2011. APROMORE: An advanced process model repository. Expert Systems with Applications 38, 6 (Jun. 2011), 7029–7040.Google ScholarGoogle Scholar
  39. Sander J. J. Leemans, Dirk Fahland, and Wil M. P. Van Der Aalst. 2013. Discovering block-structured process models from event logs—A constructive approach. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). J. M. Colom and J. Desel (Eds.), Vol. 7927, Springer, Berlin, 311–329.Google ScholarGoogle Scholar
  40. Leilei Lin, Lijie Wen, Li Lin, Jisheng Pei, and Hedong Yang. 2020. LCDD: Detecting business process drifts based on local completeness. IEEE Transactions on Services Computing 14, 8 (2020), 1–1.Google ScholarGoogle Scholar
  41. N. Liu, J. Huang, and L. Cui. 2018. A framework for online process concept drift detection from event streams. In Proceedings of the 2018 IEEE International Conference on Services Computing. IEEE, 105–112.Google ScholarGoogle Scholar
  42. Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and Guangquan Zhang. 2019. Learning under concept drift: A review. IEEE Transactions on Knowledge and Data Engineering 31, 12 (Dec. 2019), 2346–2363.Google ScholarGoogle Scholar
  43. Yang Lu. 2017. Industry 4.0: A survey on technologies, applications and open research issues. Journal of Industrial Information Integration 6 (Jun. 2017), 1–10. https://www.sciencedirect.com/science/article/abs/pii/S2452414X17300043.Google ScholarGoogle ScholarCross RefCross Ref
  44. Daniela Luengo and Marcos Sepúlveda. 2012. Applying clustering in process mining to find different versions of a business process that changes over time. In Business Process Management Workshops. Florian Daniel, Kamel Barkaoui, and Schahram Dustdar (Eds.), Springer, Berlin, 153–158.Google ScholarGoogle ScholarCross RefCross Ref
  45. Abderrahmane Maaradji, Marlon Dumas, Marcello La Rosa, and Alireza Ostovar. 2015. Fast and accurate business process drift detection. In International Conference on Business Process Management. H. Motahari-Nezhad, J. Recker, M. Weidlich (Eds.), Springer, 406–422.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. A. Maaradji, M. Dumas, M. L. Rosa, and A. Ostovar. 2017. Detecting sudden and gradual drifts in business processes from execution traces. IEEE Transactions on Knowledge and Data Engineering 29, 10 (2017), 2140–2154.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Fabrizio Maria Maggi, Andrea Burattin, Marta Cimitile, and Alessandro Sperduti. 2013. Online process discovery to detect concept drifts in LTL-based declarative process models. In On the Move to Meaningful Internet Systems (OTM’13), R. Meersman et al. (Eds). Lecture Notes in Computer Science, vol 8185. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41030-7_7Google ScholarGoogle Scholar
  48. Gurmeet Singh Manku and Rajeev Motwani. 2002. Approximate frequency counts over data streams. In 28th International Conference on Very Large Databases. Philip A. Bernstein, Yannis E. Ioannidis, Raghu Ramakrishnan, and Dimitris Papadias (Eds.) Morgan Kaufmann, San Francisco, CA, 346–357.Google ScholarGoogle ScholarCross RefCross Ref
  49. M. V. Manoj Kumar, Likewin Thomas, and B. Annappa. 2015. Capturing the sudden concept drift in process mining. In Proceedings of the CEUR Workshop. CEUR-WS.org, Brussels, 132–143.Google ScholarGoogle Scholar
  50. Giovanni Da San Martino, Nicolò Navarin, and Alessandro Sperduti. 2013. A lossy counting based approach for learning on streams of graphs on a budget. In Proceedings of the 23rd International Joint Conference on Artificial Intelligence. AAAI Press, 1294–1301.Google ScholarGoogle Scholar
  51. J. Martjushev, R. P. Jagadeesh Chandra Bose, and Wil M. P. Van Der Aalst. 2015. Change point detection and dealing with gradual and multi-order dynamics in process mining. In Proceedings of the International Conference on Business Informatics Research. Springer, 1–15.Google ScholarGoogle Scholar
  52. Martial Mermillod, Aurélia Bugaiska, and Patrick Bonin. 2013. The stability-plasticity dilemma: Investigating the continuum from catastrophic forgetting to age-limited learning effects. Frontiers in Psychology 4 (Aug. 2013), 504.Google ScholarGoogle Scholar
  53. Davide Mora, Paolo Ceravolo, Ernesto Damiani, and Gabriel Marques Tavares. 2020. The CDESF toolkit: An introduction. In ICPM Doctoral Consortium and Tool Demonstration Track 2020, Vol. 2703. CEUR-WS.org, Padua, 47–50.Google ScholarGoogle Scholar
  54. Nicolas Jashchenko Omori, Gabriel Marques Tavares, Paolo Ceravolo, and Sylvio Barbon. 2019. Comparing concept drift detection with process mining tools. In Proceedings of the 15th Brazilian Symposium on Information Systems. ACM, 1–8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Alireza Ostovar, Sander J. J. Leemans, and Marcello La Rosa. 2020. Robust drift characterization from event streams of business processes. ACM Transactions on Knowledge Discovery from Data 14, 3, Article 30 (March 2020), 57 pages.Google ScholarGoogle Scholar
  56. Alireza Ostovar, Abderrahmane Maaradji, Marcello La Rosa, and Arthur Ter. 2017. Characterizing drift from event streams of business processes. In Lecture Notes in Computer Science. E. Dubois and K. Pohl (Eds.), Vol. 10253, Springer, 210–228.Google ScholarGoogle Scholar
  57. Alireza Ostovar, Abderrahmane Maaradji, Marcello La Rosa, Arthur H. M. ter Hofstede, and Boudewijn F. V. van Dongen. 2016. Detecting drift from event streams of unpredictable business processes. In Proceedings of the International Conference on Conceptual Modeling ER 2016 (Lecture Notes in Computer Science). Springer, Cham, 330–346.Google ScholarGoogle Scholar
  58. Rohit J. Parikh. 1966. On context-free languages. Journal of the Association for Computing Machinery 13, 4 (1966), 570–581.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Stephen Pauwels and Toon Calders. 2019. An anomaly detection technique for business processes based on extended dynamic Bayesian networks. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing.494–501.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. David Redlich, Thomas Molka, Wasif Gilani, Gordon Blair, and Awais Rashid. 2014. Scalable dynamic business process discovery with the constructs competition miner. In Proceedings of the 4th International Symposium on Data-Driven Process Discovery and Analysis. Vol. 1293. CEUR-WS.org, 91–107.Google ScholarGoogle Scholar
  61. Florian Richter, Andrea Maldonado, Ludwig Zellner, and Thomas Seidl. 2020. OTOSO: Online trace ordering for structural overviews. In Process Mining Workshops (ICPM’20), S. Leemans and H. Leopold (Eds). Lecture Notes in Business Information Processing, vol 406. Springer, Cham. https://doi.org/10.1007/978-3-030-72693-5_17Google ScholarGoogle Scholar
  62. Florian Richter and Thomas Seidl. 2017. TESSERACT: Time-drifts in event streams using series of evolving rolling averages of completion times. In Business Process Management (BPM’17), J. Carmona, G. Engels, A. Kumar (Eds.). Lecture Notes in Computer Science, vol 10445. Springer, Cham. https://doi.org/10.1007/978-3-319-65000-5_17Google ScholarGoogle Scholar
  63. Florian Richter and Thomas Seidl. 2019. Looking into the TESSERACT: Time-drifts in event streams using series of evolving rolling averages of completion times. Information Systems 84 (2019), 265–282. https://www.sciencedirect.com/science/article/abs/pii/S030643791830019X?via%3Dihub.Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Helen Schonenberg, Ronny Mans, Nick Russell, Nataliya Mulyar, and Wil van der Aalst. 2008. Process flexibility: A survey of contemporary approaches. In Advances in Enterprise Engineering. Jan L. G. Dietz, Antonia Albani, and Joseph Barjis (Eds.), Springer, Berlin, 16–30.Google ScholarGoogle Scholar
  65. Erich Schubert, Michael Weiler, and Hans-Peter Kriegel. 2014. SigniTrend: Scalable detection of emerging topics in textual streams by hashed significance thresholds. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, New York, NY, 871–880.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Alexander Seeliger, Timo Nolle, and Max Mühlhäuser. 2017. Detecting concept drift in processes using graph metrics on process graphs. In Proceedings of the 9th Conference on Subject-Oriented Business Process Management. Association for Computing Machinery, New York, NY, Article 6, 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Florian Stertz and Stefanie Rinderle-Ma. 2018. Process histories—detecting and representing concept drifts based on event streams. In On the Move to Meaningful Internet Systems—OTM (Lecture Notes in Computer Science). H. Panetto, C. Debruyne, H. Proper, C. Ardagna, D. Roman, and R. Meersman (Eds.), Vol. 11229, Springer, 318–335.Google ScholarGoogle Scholar
  68. Florian Stertz and Stefanie Rinderle-Ma. 2019. Detecting and identifying data drifts in process event streams based on process histories. In Information Systems Engineering in Responsible Information Systems. Vol. 350, Springer, 133–144.Google ScholarGoogle Scholar
  69. Gabriel Marques Tavares, Paolo Ceravolo, Victor G. Turrisi Da Costa, Ernesto Damiani, and Sylvio Barbon Jr. 2019. Overlapping analytic stages in online process mining. In Proceedings of the 2019 IEEE International Conference on Services Computing. IEEE, 167–175.Google ScholarGoogle Scholar
  70. Charles Truong, Laurent Oudre, and Nicolas Vayatis. 2020. Selective review of offline change point detection methods. Signal Processing 167 (2020), 107299. https://www.sciencedirect.com/science/article/abs/pii/S0165168419303494?via%3Dihub.Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Wil Van der Aalst. 2016. Process Mining: Data Science in Action. Springer, Berlin. 1–467.Google ScholarGoogle ScholarCross RefCross Ref
  72. Wil van der Aalst, Arya Adriansyah, Ana Karla Alves de Medeiros, Franco Arcieri, Thomas Baier, Tobias Blickle, Jagadeesh Chandra Bose, Peter van den Brand, Ronald Brandtjen, Joos Buijs, Andrea Burattin, Josep Carmona, Malu Castellanos, Jan Claes, Jonathan Cook, Nicola Costantini, Francisco Curbera, Ernesto Damiani, Massimiliano de Leoni, Pavlos Delias, Boudewijn F. van Dongen, Marlon Dumas, Schahram Dustdar, Dirk Fahland, Diogo R. Ferreira, Walid Gaaloul, Frank van Geffen, Sukriti Goel, Christian Günther, Antonella Guzzo, Paul Harmon, Arthur ter Hofstede, John Hoogland, Jon Espen Ingvaldsen, Koki Kato, Rudolf Kuhn, Akhil Kumar, Marcello La Rosa, Fabrizio Maggi, Donato Malerba, Ronny S. Mans, Alberto Manuel, Martin McCreesh, Paola Mello, Jan Mendling, Marco Montali, Hamid R. Motahari-Nezhad, Michael zur Muehlen, Jorge Munoz-Gama, Luigi Pontieri, Joel Ribeiro, Anne Rozinat, Hugo Seguel Pérez, Ricardo Seguel Pérez, Marcos Sepúlveda, Jim Sinur, Pnina Soffer, Minseok Song, Alessandro Sperduti, Giovanni Stilo, Casper Stoel, Keith Swenson, Maurizio Talamo, Wei Tan, Chris Turner, Jan Vanthienen, George Varvaressos, Eric Verbeek, Marc Verdonk, Roberto Vigo, Jianmin Wang, Barbara Weber, Matthias Weidlich, Ton Weijters, Lijie Wen, Michael Westergaard, and Moe Wynn. 2011. Process mining manifesto. In Business Process Management Workshops. F. Daniel, K. Barkaoui, and S. Dustdar (Eds.), Vol. 99. Springer, 169–194.Google ScholarGoogle Scholar
  73. W. M. P. Van Der Aalst, M. Pesic, and H. Schonenberg. 2009. Declarative workflows: Balancing between flexibility and support. Computer Science—Research and Development 23, 2 (2009), 99–113.Google ScholarGoogle Scholar
  74. W. M. P. van der Aalst, B. F. van Dongen, C. Günther, A. Rozinat, H. M. W. Verbeek, and A. J. M. M. Weijters. 2009. Prom: The process mining toolkit. In Proceedings of the Business Process Management Demonstration Track. Vol. 489. CEUR-WS.org, 1–4.Google ScholarGoogle Scholar
  75. R. J. van Van and U. Goltz. 1989. Equivalence notions for concurrent systems and refinement of actions. In 14th Symposium on Mathematical Foundations of Computer Science. A. Kreczmar and G. Mirkowska (Eds.), Vol. 379. Springer, Berlin, 237–248.Google ScholarGoogle Scholar
  76. Sebastiaan J. van Zelst, Boudewijn F. van Dongen, and Wil M. P. van der Aalst. 2018. Event stream-based process discovery using abstract representations. Knowledge and Information Systems 54, 2 (2018), 407–435.Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Barbara Weber, Manfred Reichert, and Stefanie Rinderle-Ma. 2008. Change patterns and change support features - Enhancing flexibility in process-aware information systems. Data and Knowledge Engineering 66, 3 (2008), 438–466.Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Matthias Weidlich, Jan Mendling, and Mathias Weske. 2011. Efficient consistency measurement based on behavioral profiles of process models. IEEE Transactions on Software Engineering 37, 3 (2011), 410–429.Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. A. J. M. M. Weijters, W. M. P. Van Der Aalst, and A. K. Alves De Medeiros. 2006. Process Mining with the HeuristicsMiner Algorithm. Technische Universiteit Eindhoven, Eindhoven.Google ScholarGoogle Scholar
  80. Claes Wohlin. 2014. Guidelines for snowballing in systematic literature studies and a replication in software engineering. In Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering. ACM Press, New York, NY, 1–10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. H. Yang, L. Wen, and J. Wang. 2012. An approach to evaluate the local completeness of an event log. In Proceedings of the 2012 IEEE 12th International Conference on Data Mining. IEEE, 1164–1169.Google ScholarGoogle Scholar
  82. Anton Yeshchenko, Claudio Di Ciccio, Jan Mendling, and Artem Polyvyanyy. 2019. Comprehensive process drift analysis with the visual drift detection tool. In Proceedings of the CEUR Workshop Proceedings. CEUR-WS, 108–112.Google ScholarGoogle Scholar
  83. Anton Yeshchenko, Claudio Di Ciccio, Jan Mendling, and Artem Polyvyanyy. 2019. Comprehensive process drift detection with visual analytics. In Conceptual Modeling ER 2019. A. Laender, B. Pernici, E. P. Lim, and J. de Oliveira (Eds.), Springer, 119–135.Google ScholarGoogle Scholar
  84. Anton Yeshchenko, Claudio Di Ciccio, Jan Mendling, and Artem Polyvyanyy. 2021. Visual drift detection for sequence data analysis of business processes. IEEE Transactions on Visualization and Computer Graphics (2021), 1–1. https://ieeexplore.ieee.org/document/9316994.Google ScholarGoogle Scholar
  85. Anton Yeshchenko, Jan Mendling, Claudio Di Ciccio, and Artem Polyvyanyy. 2020. VDD: A visual drift detection system for process mining. In Proceedings of the Doctoral Consortium and Tool Demo Track. CEUR-WS.org, Padua, 31–34.Google ScholarGoogle Scholar
  86. Ludwig Zellner, Florian Richter, Janina Sontheim, Andrea Maldonado, and Thomas Seidl. 2020. Concept drift detection on streaming data with dynamic outlier aggregation. In Process Mining Workshops—1st International Workshop on Streaming Analytics for Process Mining, Springer (Ed.). Springer, Padua, 189–192.Google ScholarGoogle Scholar
  87. Haiping Zha, Jianmin Wang, Lijie Wen, Chaokun Wang, and Jiaguang Sun. 2010. A workflow net similarity measure based on transition adjacency relations. Computers in Industry 61, 5 (Jun. 2010), 463–471.Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. C. Zheng, L. Wen, and J. Wang. 2017. Detecting process concept drifts from event logs. In On the Move to Meaningful Internet Systems (OTM’17), Panetto H. et al. (Eds). Lecture Notes in Computer Science, vol 10573. Springer, Cham. https://doi.org/10.1007/978-3-319-69462-7_33Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A Survey on Concept Drift in Process Mining

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Computing Surveys
        ACM Computing Surveys  Volume 54, Issue 9
        December 2022
        800 pages
        ISSN:0360-0300
        EISSN:1557-7341
        DOI:10.1145/3485140
        Issue’s Table of Contents

        Copyright © 2021 Association for Computing Machinery.

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 8 October 2021
        • Accepted: 1 June 2021
        • Revised: 1 May 2021
        • Received: 1 July 2020
        Published in csur Volume 54, Issue 9

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • survey
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format