skip to main content
10.1145/3368691.3368722acmotherconferencesArticle/Chapter ViewAbstractPublication PagessensysConference Proceedingsconference-collections
research-article

Effects of central metal on spectroscopic properties of hexadeca fluorinated phthalocyanine

Published:02 December 2019Publication History

Editorial Notes

NOTICE OF CONCERN: ACM has received evidence that casts doubt on the integrity of the peer review process for the DATA 2019 Conference. As a result, ACM is issuing a Notice of Concern for all papers published and strongly suggests that the papers from this Conference not be cited in the literature until ACM's investigation has concluded and final decisions have been made regarding the integrity of the peer review process for this Conference.

ABSTRACT

The effects of central metal ion Zn(II), Ni (II)) at single-decker on spectral properties of pure hexadeca fluorinated phthalocyanine (F16Pc) in the gas phase were performed. Theoretical (UV-Vis, electronic structures, IR spectroscopy and optical properties), by density functional theory calculations (DFT) were studied. Ultraviolet- Visible (UV-vis) spectra revealed a narrow energy band gap for all complex, were coincided to presence of fluorine atoms. The F16Pc and its derivatives exhibited the followings order of energy gap NiF16P > ZnF16P > F16Pc.The frontier orbitals and electrostatic potential surface are not significantly changed by an addition the central metal atom. Apart of these, we performed an elaborate assignment for all intensely bands in vibrational spectra of metal-free hexadecafluorinated phthalocyanine and 3d-metal fluorinated phthalocyanines.

References

  1. F. Rückerl, D. Waas, B. Büchner, M. Knupfer, Particular electronic properties of F16CoPc: A decent electron acceptor material, J. Electron Spectros. Relat. Phenomena. 215 (2017) 1--7. Google ScholarGoogle ScholarCross RefCross Ref
  2. S. Şahin, S. Altun, A. Altindal, Z. Odabaş, Synthesis of novel azo-bridged phthalocyanines and their toluene vapour sensing properties, Sensors Actuators, B Chem. 206 (2015) 601--608. Google ScholarGoogle ScholarCross RefCross Ref
  3. M. Grobosch, C. Schmidt, R. Kraus, M. Knupfer, Electronic properties of transition metal phthalocyanines: The impact of the central metal atom (d5-d10), Org. Electron. Physics, Mater. Appl. 11 (2010) 1483--1488. Google ScholarGoogle ScholarCross RefCross Ref
  4. M.A. Abood, A.F. Abdulameer, I.M. Ai-essa, F.I. Mustafa, Optical Investigations of Bulk Heterojunction Blend (NiPcTs / PEDOT : PSS) Thin Films, 2 (2016) 6--11.Google ScholarGoogle Scholar
  5. H. Ahn, W.-H. Liou, H.-M.P. Chen, C.-H. Hsu, Anisotropic exciton relaxation in nanostructured metal (Zn and F16Zn)-phthalocyanine, Opt. Express. 23 (2015) 3230--3235. Google ScholarGoogle ScholarCross RefCross Ref
  6. M.S. Fakir, Z. Ahmad, K. Sulaiman, Modification of optical band gap and surface morphology of NiTsPc thin films, Chinese Phys. Lett. 29 (2012). Google ScholarGoogle ScholarCross RefCross Ref
  7. M. Neghabi, M. Zadsar, S.M.B. Ghorashi, Investigation of structural and optoelectronic properties of annealed nickel phthalocyanine thin films, Mater. Sci. Semicond. Process. 17 (2014) 13--20. Google ScholarGoogle ScholarCross RefCross Ref
  8. N. Li, W. Lu, K. Pei, Y. Yao, W. Chen, Ordered-mesoporous-carbon-bonded cobalt phthalocyanine: A bioinspired catalytic system for controllable hydrogen peroxide activation, ACS Appl. Mater. Interfaces. 6 (2014) 5869--5876. Google ScholarGoogle ScholarCross RefCross Ref
  9. E.A. Lukyanets, V.N. Nemykin, The key role of peripheral substituents in the chemistry of phthalocyanines and their analogs, J. Porphyr. Phthalocyanines. 14 (2010) 1--40. Google ScholarGoogle ScholarCross RefCross Ref
  10. F. Petraki, H. Peisert, J. Uihlein, U. Aygül, T. Chassé, CoPc and CoPcF16 on gold: Site-specific charge-transfer processes, Beilstein J. Nanotechnol. 5 (2014) 524--531. Google ScholarGoogle ScholarCross RefCross Ref
  11. M.E. Azim-Araghi, S. Riyazi, Synthesis, morphology and optical properties of nanocomposite thin films based on polypyrrole-bromo-aluminium phthalocyanine, J. Mater. Sci. Mater. Electron. 24 (2013) 4488--4493. Google ScholarGoogle ScholarCross RefCross Ref
  12. K.J. Hamam, M.I. Alomari, A study of the optical band gap of zinc phthalocyanine nanoparticles using UV-Vis spectroscopy and DFT function, Appl. Nanosci. 7 (2017) 261--268. Google ScholarGoogle ScholarCross RefCross Ref
  13. B. Keskin, O. Okuyucu, A. Altindal, A. Erdoǧmuş, Novel indium(iii) phthalocyanines; Synthesis, photophysical and humidity sensing properties, New J. Chem. 40 (2016) 5537--5545. Google ScholarGoogle ScholarCross RefCross Ref
  14. K. Cnops, G. Zango, J. Genoe, P. Heremans, M.V. Martinez-Diaz, T. Torres, D. Cheyns, Energy Level Tuning of Non-Fullerene Acceptors in Organic Solar Cells, J. Am. Chem. Soc. 137 (2015) 8991--8997. Google ScholarGoogle ScholarCross RefCross Ref
  15. Ö.T. Özmen, K. Goksen, A. Demir, M. Durmuş, O. Köysal, Investigation of photoinduced change of dielectric and electrical properties of indium (III) phthalocyanine and fullerene doped nematic liquid crystal, Synth. Met. 162 (2012) 2188--2192. Google ScholarGoogle ScholarCross RefCross Ref
  16. D. Arican, A. Erdoǧmuş, A. Koca, Electrochromism of the Langmuir-Blodgett films based on monophthalocyanines carrying redox active metal centers, Thin Solid Films. 550 (2014) 669--676. Google ScholarGoogle ScholarCross RefCross Ref
  17. K. Ishii, Functional singlet oxygen generators based on phthalocyanines, Coord. Chem. Rev. 256 (2012) 1556--1568. Google ScholarGoogle ScholarCross RefCross Ref
  18. J.T. Ping, H.S. Peng, W.B. Duan, F.T. You, M. Song, Y.Q. Wang, Synthesis and optimization of ZnPc-loaded biocompatible nanoparticles for efficient photodynamic therapy, J. Mater. Chem. B. 4 (2016) 4482--4489. Google ScholarGoogle ScholarCross RefCross Ref
  19. C.A.Z. Souto, K.P. Madeira, D. Rettori, M.O. Baratti, L.B.A. Rangel, D. Razzo, A.R. Da Silva, Improved photodynamic action of nanoparticles loaded with indium (III) phthalocyanine on MCF-7 breast cancer cells, J. Nanoparticle Res. 15 (2013). Google ScholarGoogle ScholarCross RefCross Ref
  20. M. Managa, M.A. Idowu, E. Antunes, T. Nyokong, Photophysicochemical behavior and antimicrobial activity of dihydroxosilicon tris(diaquaplatinum)octacarboxyphthalocyanine, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 125 (2014) 147--153. Google ScholarGoogle ScholarCross RefCross Ref
  21. J. Weissbecker, A. Loas, S.M. Gorun, D. Schlettwein, Switching of the Rate-limiting Step in the Electrochromic Reduction of Fluorinated Phthalocyanine Thin Films by Decreased Intermolecular Coupling, Electrochim. Acta. 157 (2015) 232--244. Google ScholarGoogle ScholarCross RefCross Ref
  22. C. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, Semiconducting π-Conjugated Systems in Field-Effect Transistors, Chem. Rev. 112 (2012) 2208--2267. Google ScholarGoogle ScholarCross RefCross Ref
  23. M.J. Jurow, B.A. Hageman, E. DiMasi, C.-Y. Nam, C. Pabon, C.T. Black, C.M. Drain, Controlling morphology and molecular packing of alkane substituted phthalocyanine blend bulk heterojunction solar cells, J. Mater. Chem. A. 1 (2013) 1557--1565. Google ScholarGoogle ScholarCross RefCross Ref
  24. M. Jurow, A. Varotto, V. Manichev, N.A. Travlou, D.A. Giannakoudakis, C.M. Drain, Self-organized nanostructured materials of alkylated phthalocyanines and underivatized C60 on ITO, RSC Adv. 3 (2013) 21360--21364. Google ScholarGoogle ScholarCross RefCross Ref
  25. S.K. Das, A. Mahler, A.K. Wilson, F. D'Souza, High-potential perfluorinated phthalocyanine-fullerene dyads for generation of high-energy charge-separated states: Formation and photoinduced electron-transfer studies, ChemPhysChem. 15 (2014) 2462--2472. Google ScholarGoogle ScholarCross RefCross Ref
  26. G.S.S. Saini, S.D. Dogra, K. Sharma, S. Singh, S.K. Tripathi, V. Sathe, R.K. Singh, Experimental and density functional theoretical study of the effects of chemical vapours on the vibrational spectra of nickel phthalocyanine thin films, Vib. Spectrosc. 57 (2011) 61--71. Google ScholarGoogle ScholarCross RefCross Ref
  27. M.J.. et al. Frisch, Official Gaussian 09 Literature Citation, Gaussian 09, Revis. D.01; Gaussian Inc. Wallingford CT J. (2009).Google ScholarGoogle Scholar
  28. A. Suzuki, T. Oku, Effects of central metal on electronic structure, magnetic properties, infrared and Raman spectra of double-decker phthalocyanine, Appl. Surf. Sci. 380 (2016) 127--134. Google ScholarGoogle ScholarCross RefCross Ref
  29. S.D. Dogra, S. Singh, S. Kaur, S.K. Tripathi, G.S.S. Saini, Effect of pyridine on zinc phthalocyanine studied by density functional theory calculations and infrared absorption spectroscopy, Vib. Spectrosc. 56 (2011) 60--65. Google ScholarGoogle ScholarCross RefCross Ref
  30. H. Jiang, J. Ye, P. Hu, F. Wei, K. Du, N. Wang, T. Ba, S. Feng, C. Kloc, Fluorination of metal phthalocyanines: Single-crystal growth, efficient N-channel organic field-effect transistors, and structure-property relationships, Sci. Rep. 4 (2014) 1--6. Google ScholarGoogle ScholarCross RefCross Ref
  31. T. V. Basova, N.S. Mikhaleva, A.K. Hassan, V.G. Kiselev, Thin films of fluorinated 3d-metal phthalocyanines as chemical sensors of ammonia: An optical spectroscopy study, Sensors Actuators, B Chem. 227 (2016) 634--642. Google ScholarGoogle ScholarCross RefCross Ref
  32. R. Ridhi, S. Singh, G.S.S. Saini, S.K. Tripathi, Comparison of interaction mechanisms of copper phthalocyanine and nickel phthalocyanine thin films with chemical vapours, J. Phys. Chem. Solids. 115 (2018) 119--126. Google ScholarGoogle ScholarCross RefCross Ref
  33. S. Heutz, G. Rumbles, T.S. Jones, Thin film properties and surface morphology of metal free phthalocyanine films grown by organic molecular beam deposition, Phys Chem Chem Phys. (1999) 1--4. http://pubs.rsc.org/en/content/articlepdf/1999/cp/a904089g%5Cnpapers2://publication/uuid/21C87196-F218-4584-BF8A-EEF535401767.Google ScholarGoogle Scholar
  34. G.S.S. Saini, S. Singh, S. Kaur, R. Kumar, V. Sathe, S.K. Tripathi, Zinc phthalocyanine thin film and chemical analyte interaction studies by density functional theory and vibrational techniques, J. Phys. Condens. Matter. 21 (2009). Google ScholarGoogle ScholarCross RefCross Ref
  35. N. Prabavathi, A. Nilufer, V. Krishnakumar, Vibrational spectroscopic (FT-iR and FT-Raman) studies, natural bon orbital analysis and molecular electrostatic potential surface of isoxanthopterin, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 114 (2013) 101--113. Google ScholarGoogle ScholarCross RefCross Ref
  36. E.J. Braga, B.T. Corpe, M.M. Marinho, E.S. Marinho, Molecular electrostatic potential surface, HOMO-LUMO, and computational analysis of synthetic drug Rilpivirine, Int. J. Sci. Eng. Res. 7 (2016) 315--319.Google ScholarGoogle Scholar
  37. D. V. Konarev, S.I. Troyanov, A. V. Kuzmin, Y. Nakano, M. Ishikawa, M.A. Faraonov, S.S. Khasanov, A.L. Litvinov, A. Otsuka, H. Yamochi, G. Saito, R.N. Lyubovskaya, The Salts of Copper Octafluoro- and Hexadecafluorophthalocyanines Containing [CuII(F8Pc)4-]2-Dianions and [CuF16Pc]-Monoanions, Inorg. Chem. 56 (2017) 1804--1813. Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Other conferences
    DATA '19: Proceedings of the Second International Conference on Data Science, E-Learning and Information Systems
    December 2019
    376 pages
    ISBN:9781450372848
    DOI:10.1145/3368691

    Copyright © 2019 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 2 December 2019

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article

    Acceptance Rates

    DATA '19 Paper Acceptance Rate58of146submissions,40%Overall Acceptance Rate74of167submissions,44%
  • Article Metrics

    • Downloads (Last 12 months)9
    • Downloads (Last 6 weeks)2

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader