skip to main content
10.1145/3313276.3316366acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article
Public Access

Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics

Published:23 June 2019Publication History

ABSTRACT

An n-qubit quantum circuit performs a unitary operation on an exponentially large, 2n-dimensional, Hilbert space, which is a major source of quantum speed-ups. We develop a new “Quantum singular value transformation” algorithm that can directly harness the advantages of exponential dimensionality by applying polynomial transformations to the singular values of a block of a unitary operator. The transformations are realized by quantum circuits with a very simple structure - typically using only a constant number of ancilla qubits - leading to optimal algorithms with appealing constant factors. We show that our framework allows describing many quantum algorithms on a high level, and enables remarkably concise proofs for many prominent quantum algorithms, ranging from optimal Hamiltonian simulation to various quantum machine learning applications. We also devise a new singular vector transformation algorithm, describe how to exponentially improve the complexity of implementing fractional queries to unitaries with a gapped spectrum, and show how to efficiently implement principal component regression. Finally, we also prove a quantum lower bound on spectral transformations.

References

  1. Scott Aaronson. 2006. The ten most annoying questions in quantum computing. https://www.scottaaronson.com/blog/?p=112.Google ScholarGoogle Scholar
  2. Alexei B. Aleksandrov and Vladimir V. Peller. 2016. Operator Lipschitz functions. Russian Mathematical Surveys 71, 4 (2016), 605–702. arXiv: 1611.01593Google ScholarGoogle ScholarCross RefCross Ref
  3. Andris Ambainis. 2004.Google ScholarGoogle Scholar
  4. Quantum Walk Algorithm for Element Distinctness. In Proceedings of the 45th IEEE Symposium on Foundations of Computer Science (FOCS). 22–31. arXiv: quant-ph/0311001 Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Joran van Apeldoorn and András Gilyén. 2019. Improvements in Quantum SDPSolving with Applications. In Proceedings of the 46th International Colloquium on Automata, Languages, and Programming (ICALP). (to appear) arXiv: 1804.05058Google ScholarGoogle Scholar
  6. Joran van Apeldoorn and András Gilyén. 2019. Quantum algorithms for zero-sum games. (2019).Google ScholarGoogle Scholar
  7. arXiv: 1904.03180Google ScholarGoogle Scholar
  8. Joran van Apeldoorn, András Gilyén, Sander Gribling, and Ronald de Wolf. 2017.Google ScholarGoogle Scholar
  9. Quantum SDP-Solvers: Better upper and lower bounds. In Proceedings of the 58th IEEE Symposium on Foundations of Computer Science (FOCS). 403–414. arXiv: 1705.01843Google ScholarGoogle Scholar
  10. Simon Apers and Alain Sarlette. 2018. Quantum Fast-Forwarding Markov Chains. (2018).Google ScholarGoogle Scholar
  11. arXiv: 1804.02321Google ScholarGoogle Scholar
  12. Sanjeev Arora and Satyen Kale. 2016. A Combinatorial, Primal-Dual Approach to Semidefinite Programs. Journal of the ACM 63, 2 (2016), 12:1–12:35. Earlier version in STOC’07. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Dominic W. Berry, Graeme Ahokas, Richard Cleve, and Barry C. Sanders. 2007.Google ScholarGoogle Scholar
  14. Efficient Quantum Algorithms for Simulating Sparse Hamiltonians. Communications in Mathematical Physics 270, 2 (2007), 359–371. arXiv: quant-ph/0508139Google ScholarGoogle Scholar
  15. Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and Rolando D. Somma. 2014. Exponential improvement in precision for simulating sparse Hamiltonians. In Proceedings of the 46th ACM Symposium on the Theory of Computing (STOC). 283–292. arXiv: 1312.1414Google ScholarGoogle Scholar
  16. Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and Rolando D. Somma. 2015. Simulating Hamiltonian Dynamics with a Truncated Taylor Series. Physical Review Letters 114, 9 (2015), 090502.Google ScholarGoogle ScholarCross RefCross Ref
  17. arXiv: 1412.4687Google ScholarGoogle Scholar
  18. Dominic W. Berry, Andrew M. Childs, and Robin Kothari. 2015.Google ScholarGoogle Scholar
  19. Hamiltonian Simulation with Nearly Optimal Dependence on all Parameters. In Proceedings of the 56th IEEE Symposium on Foundations of Computer Science (FOCS). 792–809. arXiv: 1501.01715Google ScholarGoogle Scholar
  20. Fernando G. S. L. Brandão, Amir Kalev, Tongyang Li, Cedric Yen-Yu Lin, Krysta M. Svore, and Xiaodi Wu. 2019. Quantum SDP Solvers: Large Speed-ups, Optimality, and Applications to Quantum Learning. In Proceedings of the 46th International Colloquium on Automata, Languages, and Programming (ICALP). (to appear) arXiv: 1710.02581Google ScholarGoogle Scholar
  21. Fernando G. S. L. Brandão and Krysta M. Svore. 2017. Quantum Speed-ups for Solving Semidefinite Programs. In Proceedings of the 58th IEEE Symposium on Foundations of Computer Science (FOCS). 415–426. arXiv: 1609.05537Google ScholarGoogle Scholar
  22. Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. 2002. Quantum Amplitude Amplification and Estimation. In Quantum Computation and Quantum Information: A Millennium Volume. Contemporary Mathematics Series, Vol. 305. AMS, 53–74. arXiv: quant-ph/0005055Google ScholarGoogle Scholar
  23. Shantanav Chakraborty, András Gilyén, and Stacey Jeffery. 2019.Google ScholarGoogle Scholar
  24. The power of block-encoded matrix powers: improved regression techniques via faster Hamiltonian simulation. In Proceedings of the 46th International Colloquium on Automata, Languages, and Programming (ICALP). (to appear) arXiv: 1804.01973Google ScholarGoogle Scholar
  25. Andrew M. Childs, Robin Kothari, and Rolando D. Somma. 2017. Quantum Algorithm for Systems of Linear Equations with Exponentially Improved Dependence on Precision. SIAM Journal on Computing 46, 6 (2017), 1920–1950.Google ScholarGoogle ScholarCross RefCross Ref
  26. arXiv: 1511.02306Google ScholarGoogle Scholar
  27. Andrew M. Childs, Dmitri Maslov, Yunseong Nam, Neil J. Ross, and Yuan Su. 2017. Toward the first quantum simulation with quantum speedup. (2017). arXiv: 1711.10980Google ScholarGoogle Scholar
  28. Andrew M. Childs and Nathan Wiebe. 2012. Hamiltonian simulation using linear combinations of unitary operations. Quantum Information and Computation 12, 11&12 (2012), 901–924. arXiv: 1202.5822Google ScholarGoogle Scholar
  29. Anirban Narayan Chowdhury and Rolando D. Somma. 2017.Google ScholarGoogle Scholar
  30. Quantum algorithms for Gibbs sampling and hitting-time estimation. Quantum Information and Computation 17, 1&2 (2017), 41–64. arXiv: 1603.02940 Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Yuliya B. Farforovskaya and Ludmila N. Nikolskaya. 2009. Modulus of continuity of operator functions. St. Petersburg Math. J. – Algebra i Analiz 20, 3 (2009), 493–506.Google ScholarGoogle Scholar
  32. Richard P. Feynman. 1982.Google ScholarGoogle Scholar
  33. Simulating physics with computers. International Journal of Theoretical Physics 21, 6-7 (1982), 467–488.Google ScholarGoogle Scholar
  34. Roy Frostig, Cameron Musco, Christopher Musco, and Aaron Sidford. 2016. Principal Component Projection Without Principal Component Analysis. In Proceedings of the 33rd International Conference on Machine Learning (ICML). 2349–2357. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. arXiv: 1602.06872Google ScholarGoogle Scholar
  36. András Gilyén. 2019.Google ScholarGoogle Scholar
  37. Quantum Singular Value Transformation & Its Algorithmic Applications. Ph.D. Dissertation. University of Amsterdam. Advisor(s) Ronald de Wolf.Google ScholarGoogle Scholar
  38. András Gilyén and Or Sattath. 2017.Google ScholarGoogle Scholar
  39. On Preparing Ground States of Gapped Hamiltonians: An Efficient Quantum Lovász Local Lemma. In Proceedings of the 58th IEEE Symposium on Foundations of Computer Science (FOCS). 439–450. arXiv: 1611.08571Google ScholarGoogle Scholar
  40. András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. 2018. Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. {Full version} arXiv: 1806.01838Google ScholarGoogle Scholar
  41. Lov K. Grover. 1996. A Fast Quantum Mechanical Algorithm for Database Search. In Proceedings of the 28th ACM Symposium on the Theory of Computing (STOC). 212–219. arXiv: quant-ph/9605043Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Lov K. Grover. 2005. Fixed-Point Quantum Search. Physical Review Letters 95, 15 (2005), 150501.Google ScholarGoogle ScholarCross RefCross Ref
  43. arXiv: quant-ph/0503205Google ScholarGoogle Scholar
  44. Jeongwan Haah. 2018. Product Decomposition of Periodic Functions in Quantum Signal Processing. (2018).Google ScholarGoogle Scholar
  45. arXiv: 1806.10236Google ScholarGoogle Scholar
  46. Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. 2009. Quantum algorithm for linear systems of equations. Physical Review Letters 103, 15 (2009), 150502.Google ScholarGoogle ScholarCross RefCross Ref
  47. arXiv: 0811.3171Google ScholarGoogle Scholar
  48. Aram W. Harrow, Cedric Yen-Yu Lin, and Ashley Montanaro. 2017. Sequential measurements, disturbance and property testing. In Proceedings of the 28th ACMSIAM Symposium on Discrete Algorithms (SODA). 1598–1611. arXiv: 1607.03236 Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Yong He, Ming-Xing Luo, E. Zhang, Hong-Ke Wang, and Xiao-Feng Wang. 2017.Google ScholarGoogle Scholar
  50. Decompositions of n-qubit Toffoli Gates with Linear Circuit Complexity. International Journal of Theoretical Physics 56, 7 (2017), 2350–2361.Google ScholarGoogle Scholar
  51. Peter Høyer. 2000. Arbitrary phases in quantum amplitude amplification. Physical Review A 62, 5 (2000), 052304.Google ScholarGoogle ScholarCross RefCross Ref
  52. arXiv: quant-ph/0006031Google ScholarGoogle Scholar
  53. Camille Jordan. 1875. Essai sur la géométrie à n dimensions. Bulletin de la Société Mathématique de France 3 (1875), 103–174. http://eudml.org/doc/85325Google ScholarGoogle ScholarCross RefCross Ref
  54. Iordanis Kerenidis and Alessandro Luongo. 2018. Quantum classification of the MNIST dataset via Slow Feature Analysis. (2018).Google ScholarGoogle Scholar
  55. arXiv: 1805.08837Google ScholarGoogle Scholar
  56. Iordanis Kerenidis and Anupam Prakash. 2017. Quantum gradient descent for linear systems and least squares. (2017).Google ScholarGoogle Scholar
  57. arXiv: 1704.04992Google ScholarGoogle Scholar
  58. Iordanis Kerenidis and Anupam Prakash. 2017.Google ScholarGoogle Scholar
  59. Quantum Recommendation Systems. In Proceedings of the 8th Innovations in Theoretical Computer Science Conference (ITCS). 49:1–49:21. arXiv: 1603.08675Google ScholarGoogle Scholar
  60. Shelby Kimmel, Cedric Yen-Yu Lin, Guang Hao Low, Maris Ozols, and Theodore J. Yoder. 2017.Google ScholarGoogle Scholar
  61. Hamiltonian simulation with optimal sample complexity. npj Quantum Information 3, 1 (2017), 13. arXiv: 1608.00281Google ScholarGoogle Scholar
  62. Seth Lloyd. 1996.Google ScholarGoogle Scholar
  63. Universal Quantum Simulators. Science 273, 5278 (1996), 1073–1078.Google ScholarGoogle Scholar
  64. Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. 2014. Quantum principal component analysis. Nature Physics 10 (2014), 631–633. arXiv: 1307.0401Google ScholarGoogle ScholarCross RefCross Ref
  65. Guang Hao Low and Isaac L. Chuang. 2016. Hamiltonian Simulation by Qubitization. (2016).Google ScholarGoogle Scholar
  66. arXiv: 1610.06546Google ScholarGoogle Scholar
  67. Guang Hao Low and Isaac L. Chuang. 2017. Hamiltonian Simulation by Uniform Spectral Amplification. (2017).Google ScholarGoogle Scholar
  68. arXiv: 1707.05391Google ScholarGoogle Scholar
  69. Guang Hao Low and Isaac L. Chuang. 2017. Optimal Hamiltonian Simulation by Quantum Signal Processing. Physical Review Letters 118, 1 (2017), 010501. arXiv: 1606.02685Google ScholarGoogle ScholarCross RefCross Ref
  70. Guang Hao Low, Theodore J. Yoder, and Isaac L. Chuang. 2016. Methodology of Resonant Equiangular Composite Quantum Gates. Physical Review X 6, 4 (2016), 041067.Google ScholarGoogle Scholar
  71. arXiv: 1603.03996Google ScholarGoogle Scholar
  72. Frédéric Magniez, Ashwin Nayak, Jérémie Roland, and Miklos Santha. 2011.Google ScholarGoogle Scholar
  73. Search via Quantum Walk. SIAM Journal on Computing 40, 1 (2011), 142–164. arXiv: quant-ph/0608026 Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Chris Marriott and John Watrous. 2005. Quantum Arthur–Merlin games. Computational Complexity 14, 2 (2005), 122–152. arXiv: cs/0506068 Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Daniel Nagaj, Pawel Wocjan, and Yong Zhang. 2009. Fast Amplification of QMA. Quantum Information and Computation 9, 11&12 (2009), 1053–1068. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. arXiv: 0904.1549Google ScholarGoogle Scholar
  77. David Poulin and Pawel Wocjan. 2009. Sampling from the Thermal Quantum Gibbs State and Evaluating Partition Functions with a Quantum Computer. Physical Review Letters 103, 22 (2009), 220502.Google ScholarGoogle ScholarCross RefCross Ref
  78. arXiv: 0905.2199Google ScholarGoogle Scholar
  79. Sushant Sachdeva and Nisheeth K. Vishnoi. 2014. Faster Algorithms via Approximation Theory. Found. Trends Theor. Comput. Sci. 9, 2 (2014), 125–210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Lana Sheridan, Dmitri Maslov, and Michele Mosca. 2009. Approximating fractional time quantum evolution. Journal of Physics A: Mathematical and Theoretical 42, 18 (2009), 185302.Google ScholarGoogle ScholarCross RefCross Ref
  81. arXiv: 0810.3843Google ScholarGoogle Scholar
  82. Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM Journal on Computing 26, 5 (1997), 1484–1509. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. Earlier version in FOCS’94. arXiv: quant-ph/9508027Google ScholarGoogle Scholar
  84. Peter W. Shor. 2003.Google ScholarGoogle Scholar
  85. Why Haven’t More Quantum Algorithms Been Found? Journal of the ACM 50, 1 (2003), 87–90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Márió Szegedy. 2004.Google ScholarGoogle Scholar
  87. Quantum speed-up of Markov chain based algorithms. In Proceedings of the 45th IEEE Symposium on Foundations of Computer Science (FOCS). 32–41. arXiv: quant-ph/0401053 Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. Theodore J. Yoder, Guang Hao Low, and Isaac L. Chuang. 2014.Google ScholarGoogle Scholar
  89. Fixed-Point Quantum Search with an Optimal Number of Queries. Physical Review Letters 113, 21 (2014), 210501.Google ScholarGoogle Scholar

Index Terms

  1. Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        STOC 2019: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing
        June 2019
        1258 pages
        ISBN:9781450367059
        DOI:10.1145/3313276

        Copyright © 2019 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 23 June 2019

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate1,469of4,586submissions,32%

        Upcoming Conference

        STOC '24
        56th Annual ACM Symposium on Theory of Computing (STOC 2024)
        June 24 - 28, 2024
        Vancouver , BC , Canada

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader