skip to main content
10.1145/3230543.3230567acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article
Public Access

PLoRa: a passive long-range data network from ambient LoRa transmissions

Published:07 August 2018Publication History

ABSTRACT

This paper presents PLoRa, an ambient backscatter design that enables long-range wireless connectivity for batteryless IoT devices. PLoRa takes ambient LoRa transmissions as the excitation signals, conveys data by modulating an excitation signal into a new standard LoRa "chirp" signal, and shifts this new signal to a different LoRa channel to be received at a gateway faraway. PLoRa achieves this by a holistic RF front-end hardware and software design, including a low-power packet detection circuit, a blind chirp modulation algorithm and a low-power energy management circuit. To form a complete ambient LoRa backscatter network, we integrate a light-weight backscatter signal decoding algorithm with a MAC-layer protocol that work together to make coexistence of PLoRa tags and active LoRa nodes possible in the network. We prototype PLoRa on a four-layer printed circuit board, and test it in various outdoor and indoor environments. Our experimental results demonstrate that our prototype PCB PLoRa tag can backscatter an ambient LoRa transmission sent from a nearby LoRa node (20 cm away) to a gateway up to 1.1 km away, and deliver 284 bytes data every 24 minutes indoors, or every 17 minutes outdoors. We also simulate a 28-nm low-power FPGA based prototype whose digital baseband processor achieves 220 μW power consumption.

References

  1. 2N7000 MOSFET. Website.Google ScholarGoogle Scholar
  2. ADG902 RF switch. Website.Google ScholarGoogle Scholar
  3. Arduino uno rev3. Website.Google ScholarGoogle Scholar
  4. D. Bharadia, K. R. Joshi, M. Kotaru, S. Katti. BackFi: High throughput Wi-Fi backscatter. SIGCOMM Comput. Commun. Rev., 45(4), 283--296, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bluetooth low energy. Website.Google ScholarGoogle Scholar
  6. NCS2200 Series, NCS2200A Low Voltage Comparators. Website.Google ScholarGoogle Scholar
  7. D. M. Dobkin. The RF in RFID: UHF RFID in practice. Newnes, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. A. Dongare, R. Narayanan, A. Gadre, A. Luong, A. Balanuta, S. Kumar, B. Iannucci, A. Rowe. Charm: Exploiting geographical diversity through coherent combining in low-power wide-area networks. IPSN, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Surface Mount Microwave Schottky Detector Diodes. Website.Google ScholarGoogle Scholar
  10. IGLOO nano FPGAs. Website.Google ScholarGoogle Scholar
  11. Microsemi Corporation AGLN250V2-VQ100 FPGA. .Google ScholarGoogle Scholar
  12. gr-lora decoder. Website.Google ScholarGoogle Scholar
  13. C. Hambeck, S. Mahlknecht, T. Herndl. A 2.4 μw wake-up receiver for wireless sensor nodes with- 71dbm sensitivity. Circuits and Systems (ISCAS), 2011 IEEE International Symposium on, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  14. P. Hu, P. Zhang, D. Ganesan. Laissez-faire: Fully asymmetric backscatter communication. SIGCOMM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. IR510A MOSFET. Website.Google ScholarGoogle Scholar
  16. V. Iyer, V. Talla, B. Kellogg, S. Gollakota, J. Smith. Inter-technology backscatter: Towards internet connectivity for implanted devices. SIGCOMM, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. B. Kellogg, A. Parks, S. Gollakota, J. R. Smith, D. Wetherall. Wi-Fi backscatter: Internet connectivity for RF-powered devices. SIGCOMM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. B. Kellogg, V. Talla, S. Gollakota, J. R. Smith. Passive Wi-Fi: Bringing Low Power to Wi-Fi Transmissions. NSDI, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, J. R. Smith. Ambient backscatter: wireless communication out of thin air. SIGCOMM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Mini-circuit ZRL-1150LN+ low noise amplifier. .Google ScholarGoogle Scholar
  21. LoRa. Website.Google ScholarGoogle Scholar
  22. Four-faith LoRa application. Website.Google ScholarGoogle Scholar
  23. C. Lu, V. Raghunathan, K. Roy. Efficient design of micro-scale energy harvesting systems. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  24. S. Naderiparizi, A. N. Parks, Z. Kapetanovic, B. Ransford, J. R. Smith. Wispcam: A battery-free rfid camera. RFID, 2015.Google ScholarGoogle Scholar
  25. Narrow-band IoT. Website.Google ScholarGoogle Scholar
  26. P. Nintanavongsa, U. Muncuk, D. R. Lewis, K. R. Chowdhury. Design optimization and implementation for RF energy harvesting circuits. IEEE Journal on emerging and selected topics in circuits and systems, 2012.Google ScholarGoogle Scholar
  27. S. Oh, N. E. Roberts, D. D. Wentzloff. A 116nw multi-band wake-up receiver with 31-bit correlator and interference rejection. CICC, 2013 IEEE, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  28. A. N. Parks, A. Liu, S. Gollakota, J. R. Smith. Turbocharging ambient backscatter communication. SIGCOMM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. C. Pérez-Penichet, F. Hermans, A. Varshney, T. Voight. Augmenting IoT networks with backscatter-enabled passive sensor tags. HotWireless, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. J. M. Rabaey, M. J. Ammer, J. L. da Silva, D. Patel, S. Roundy. Picoradio supports ad hoc ultra-low power wireless networking. Computer, 33(7), 42--48, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. B. Ransford, J. Sorber, K. Fu. Mementos: System support for long-running computation on RFID-scale devices. ACM SIGPLAN Notices, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. N. E. Roberts, D. D. Wentzloff. Ultra-low power wake-up radios. Ultra-Low-Power Short-Range Radios, 137--162, 2015.Google ScholarGoogle Scholar
  33. Samwha Tech Corp. SCDM3R3224 super capacitor. Website.Google ScholarGoogle Scholar
  34. Sigfox. Website.Google ScholarGoogle Scholar
  35. LoRa Technology Is Connecting Our Smart Planet. Website.Google ScholarGoogle Scholar
  36. Semtech SX1257. Website.Google ScholarGoogle Scholar
  37. Semtech SX1276 Transceiver. Website.Google ScholarGoogle Scholar
  38. V. Talla, M. Hessar, B. Kellogg, A. Najafi, J. R. Smith, S. Gollakota. LoRa Backscatter: Enabling The Vision of Ubiquitous Connectivity. IMWUT, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. U8485A DC/10 MHz-33 GHz USB Thermocouple Power Sensor. Website.Google ScholarGoogle Scholar
  40. A. Varshney, O. Harms, C. Pérez-Penichet, C. Rohner, F. Hermans, T. Voigt. Lorea: A backsca er architecture that achieves a long communication range. SenSys, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. A. Wang, V. Iyer, V. Talla, J. R. Smith, S. Gollakota. FM Backscatter: Enabling Connected Cities and Smart Fabrics. NSDI, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. J. Wang, H. Hassanieh, D. Katabi, P. Indyk. Efficient and reliable low-power backscatter networks. SIGCOMM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Intel WISP 4.0. Website.Google ScholarGoogle Scholar
  44. Xilinx kintex 7 datasheet. Website.Google ScholarGoogle Scholar
  45. Photovoltaic Charger XRYG-905. Website.Google ScholarGoogle Scholar
  46. P. Zhang, D. Bharadia, K. R. Joshi, S. Katti. HitchHike: Practical Backscatter Using Commodity WiFi. SenSys, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. P. Zhang, D. Ganesan. Enabling bit-by-bit backscatter communication in severe energy harvesting environments. NSDI, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. P. Zhang, C. Josephson, D. Bharadia, S. Katti. Freerider: Backscatter communication using commodity radios. CoNEXT, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. P. Zhang, M. Rostami, P. Hu, D. Ganesan. Enabling practical backscatter communication for on-body sensors. SIGCOMM, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. X. Zhang, K. G. Shin. E-mili: Energy-minimizing idle listening in wireless networks. IEEE Transactions on Mobile Computing, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Zigbee. Website.Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    SIGCOMM '18: Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication
    August 2018
    604 pages
    ISBN:9781450355674
    DOI:10.1145/3230543

    Copyright © 2018 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 7 August 2018

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article

    Acceptance Rates

    Overall Acceptance Rate554of3,547submissions,16%

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader