skip to main content
research-article

Locally Adaptive Rank-Constrained Optimal Tone Mapping

Published:27 July 2018Publication History
Skip Abstract Section

Abstract

High dynamic range (HDR) tone mapping is formulated as an optimization problem of maximizing perceivable spatial details given the limited dynamic range of display devices. This objective can be attained, as supported by our results, by a novel image display methodology called locally adaptive rank-constrained optimal tone mapping (LARCOTM). The scientific basis for LARCOTM is that the maximum discrimination power of human vision system can only be achieved in a relatively small locality of an image. LARCOTM is fundamentally different from existing HDR tone mapping techniques in that the former can preserve pixel value order statistics within localities in which human foveal vision retains maximum sensitivity, while the latter cannot. As a result, images enhanced by LARCOTM are free of artifacts such as halos and double edges that plague other HDR methods.

Skip Supplemental Material Section

Supplemental Material

tog-37-3-a38-shu.mp4

mp4

210.4 MB

References

  1. Edward H. Adelson. 2000. Lightness perception and lightness illusions. In The New Cognitive Neurosciences (2nd ed.). MIT Press, 339--351.Google ScholarGoogle Scholar
  2. Sos Agaian, Blair Silver, and Karen Panetta. 2007. Transform coefficient histogram-based image enhancement algorithms using contrast entropy. IEEE Trans. Image Process. 16, 3 (2007), 741--758. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Mathieu Aubry, Sylvain Paris, Samuel W. Hasinoff, Jan Kautz, and Frédo Durand. 2014. Fast local laplacian filters: Theory and applications. ACM Trans. Graph. (TOG) 33, 5 (2014), 167:1--167:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. J. Ed Barnes. 1992. Characteristics and control of contrast in CT. Radiographics 12, 4 (1992), 825--837.Google ScholarGoogle ScholarCross RefCross Ref
  5. T. Celik and T. Tjahjadi. 2011. Contextual and variational contrast enhancement. IEEE Trans. Image Process. 20, 12 (2011), 3431--3441. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Hadar Cohen-Duwek, Hedva Spitzer, Rony Weitzen, and Sara Apter. 2011. A biologically-based algorithm for companding computerized tomography (CT) images. Comput. Biol. Med. 41, 6 (2011), 367--379. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. DDE 2016. Digital Detail Enhancement (DDE) Technical Note. Retrieved from http://www.flirmedia.com/MMC/CVS/Tech_Notes/TN_0003_EN.pdf.Google ScholarGoogle Scholar
  8. Zeev Farbman, Raanan Fattal, Dani Lischinski, and Richard Szeliski. 2008. Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. 27, 3 (2008), 67:1--67:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Raanan Fattal. 2009. Edge-avoiding wavelets and their applications. ACM Trans. Graph. 28, 3 (2009), 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Raanan Fattal, Dani Lischinski, and Michael Werman. 2002. Gradient domain high dynamic range compression. ACM Trans. Graph. 21, 3 (2002), 249--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Ajo John, Walter Huda, Ernest M. Scalzetti, Kent M. Ogden, and Marsha L. Roskopf. 2004. Performance of a single lookup table (LUT) for displaying chest CT images. Acad. Radiol. 11, 6 (2004), 609--619.Google ScholarGoogle ScholarCross RefCross Ref
  12. Y. T. Kim. 1997. Enhancement using brightness preserving bi-histogram equalization. IEEE Trans. Consum. Electron. 43, 1 (1997), 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Tom Kimpe and Tom Tuytschaever. 2007. Increasing the number of gray shades in medical display systems—How much is enough? J. Dig. Imag. 20, 4 (2007), 422--432.Google ScholarGoogle ScholarCross RefCross Ref
  14. E. H. Land and J. J. McCann. 1971. Lightness and retinex theory. J. Optic. Soc. Amer. 61, 1 (1971), 1--11.Google ScholarGoogle ScholarCross RefCross Ref
  15. G. W. Larson, H. Rushmeier, and C. Piatko. 1997. A visibility matching tone reproduction operator for high dynamic range scenes. IEEE Trans. Visual. Comput. Graph. 3, 4 (1997), 291--306. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Zhenhao Li and Xiaolin Wu. 2014. Contrast enhancement with chromaticity error bound. In Proceedings of the International Conference on Image Processing (ICIP’14). IEEE, 4507--4511.Google ScholarGoogle ScholarCross RefCross Ref
  17. RafałMantiuk, Scott Daly, and Louis Kerofsky. 2008. Display adaptive tone mapping. ACM Trans. Graph. 27, 3 (2008), 68:1--68:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Rafat Mantiuk, Kil Joong Kim, Allan G. Rempel, and Wolfgang Heidrich. 2011. HDR-VDP-2: A calibrated visual metric for visibility and quality predictions in all luminance conditions. In ACM Transactions on Graphics, vol. 30. ACM, 40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. RafałMantiuk, Karol Myszkowski, and Hans-Peter Seidel. 2006. A perceptual framework for contrast processing of high dynamic range images. ACM Trans. Appl. Percept. 3, 3 (2006), 286--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. A. V. Oppenheim, R. W. Schafer, and T. G. Stockham Jr.1968. Nonlinear filtering of multiplied and convolved signals. IEEE Trans. Audio Electroacoust. 16, 3 (1968), 437--466.Google ScholarGoogle ScholarCross RefCross Ref
  21. Sylvain Paris, Samuel W. Hasinoff, and Jan Kautz. 2011. Local laplacian filters: Edge-aware image processing with a laplacian pyramid. ACM Trans. Graph. 30, 4 (2011), 68:1--68:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Ziaur Rahman and Glenn A. Woodell. 2004. Retinex processing for automatic image enhancement. J. Electron. Imag. 13 (2004), 100--110.Google ScholarGoogle ScholarCross RefCross Ref
  23. Erik Reinhard, Michael Stark, Peter Shirley, and James Ferwerda. 2002. Photographic tone reproduction for digital images. ACM Trans. Graph. 21, 3 (2002), 267--276. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. E. Reinhard, G. Ward, S. Pattanaik, and P. Debevec. 2005. High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting. Morgan Kaufmann. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Xiao Shu and Xiaolin Wu. 2013. Image enhancement revisited: From first order to second order statistics. In Proceedings of the International Conference on Image Processing (ICIP’13). IEEE, 886--890.Google ScholarGoogle ScholarCross RefCross Ref
  26. J. A. Stark. 2000. Adaptive image contrast enhancement using generalizations histogram equalization. IEEE Trans. Image Process. 9, 5 (2000), 889--896. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Martin Čadík, Michael Wimmer, Laszlo Neumann, and Alessandro Artusi. 2008. Evaluation of HDR tone mapping methods using essential perceptual attributes. Comput. Graph. 32, 3 (2008), 330--349. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Y. Wang, Q. Chen, and B. Zhang. 1999. Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans. Consum. Electron. 45, 1 (1999), 68--75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. X. Wu. 2011. A linear programming approach for optimal contrast-tone mapping. IEEE Trans. Image Process. 20, 5 (2011), 1262--1272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Hojatollah Yeganeh and Zhou Wang. 2013. Objective quality assessment of tone-mapped images. IEEE Trans. Image Process. 22, 2 (2013), 657--667. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Locally Adaptive Rank-Constrained Optimal Tone Mapping

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 37, Issue 3
      Special Issue On Production Rendering and Regular Papers
      June 2018
      198 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3243123
      Issue’s Table of Contents

      Copyright © 2018 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 27 July 2018
      • Revised: 1 March 2018
      • Accepted: 1 March 2018
      • Received: 1 September 2015
      Published in tog Volume 37, Issue 3

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format