skip to main content
article
Free Access

Fast Multiple-Precision Evaluation of Elementary Functions

Authors Info & Claims
Published:01 April 1976Publication History
Skip Abstract Section

Abstract

Let ƒ(x) be one of the usual elementary functions (exp, log, artan, sin, cosh, etc.), and let M(n) be the number of single-precision operations required to multiply n-bit integers. It is shown that ƒ(x) can be evaluated, with relative error Ο(2-n), in Ο(M(n)log (n)) operations as n → ∞, for any floating-point number x (with an n-bit fraction) in a suitable finite interval. From the Schönhage-Strassen bound on M(n), it follows that an n-bit approximation to ƒ(x) may be evaluated in Ο(n log2(n) log log(n)) operations. Special cases include the evaluation of constants such as π, e, and eπ. The algorithms depend on the theory of elliptic integrals, using the arithmetic-geometric mean iteration and ascending Landen transformations.

References

  1. 1 ABRAMOWITZ, M., AND STEGUN, I.A. Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards, Washington, D.C., 1964; Dover, 1965, Ch. 17. Google ScholarGoogle Scholar
  2. 2 BEELER, M, GOSPEl, R.W, xsv SCHROEPPEL, R Hakmem Memo No. 239, M.I.T. Artfficial Intelligence Lab., M I T., Cambridge, Mass., 1972, pp. 70-71 Google ScholarGoogle Scholar
  3. 3 BORCHAttDT, C W. Gesammelte Werke. Berlin, 1888, pp. 455-462Google ScholarGoogle Scholar
  4. 4 BRENT, R P. The complexity of multiple-precision arithmetic. Proc Seminar on Complexity of Computattonal Problem Solving (held at Austrahan National U., Dec. 1974), Queensland U. Press, Brisbane, Australia 1975, pp 126-165Google ScholarGoogle Scholar
  5. 5 BRENT, R P. Multiple-precision zero-finding methods and the complexity of elementary functmn evaluation Proc Symp. on Analytic Computational Complexity, J.F. Traub, Ed, Academm Press, New York, 1976, pp 151-176.Google ScholarGoogle Scholar
  6. 6 BRENT, R.P. Computer Solutwn of Nonlinear Equations. Academm Press, New York (to appear), Ch. 6.Google ScholarGoogle Scholar
  7. 7 BRENT, R P. A Fortran multiple-precision arithmetic package. Submitted to a technical journal. Google ScholarGoogle Scholar
  8. 8 CARLSON, B.C Algorithms involving arithmetic and geometric means. Amer. Math. Monthly 78 (May 1971), 496-505.Google ScholarGoogle Scholar
  9. 9 CARLSON, B C. An algorithm for computing logarithms and arctangents. Math. Comput. ~6 (Aprd 1972), 543-549.Google ScholarGoogle Scholar
  10. 10 FINKEL, R, GUIBAs, L, AND SIMONYI, C Manuscript in preparation.Google ScholarGoogle Scholar
  11. 11 FISCHER, M j, ASB STOCKMEYER, L J Fast on-line integer multiphcation. J. Compu~. System Scis. 9 (Dec. 1974), 317-331Google ScholarGoogle Scholar
  12. 12 GAuss, C.F Carl Fmedmch Gauss Werke, Bd. 3 Gottingen, 1876, pp. 362-403.Google ScholarGoogle Scholar
  13. 13 GosP~R, R.W. Acceleratton of series. Memo No 304, M.I.T. Artificml Intelligence Lab., M I.T, Cambridge, Mass, 1974. Google ScholarGoogle Scholar
  14. 14 GUILLOUV, J., AND BOUYER, M 1,000,000 decimals de pi. Unpublished manuscriptGoogle ScholarGoogle Scholar
  15. 15 KNUTH, D.E. The Art of Computer Proqramm~nq, Vol. 2 Addison-Wesley, Reading, Mass, 1969. Errata and addenda: Rep. CS 194, Computer Sci Dep., Stanford U., Stanford, Calif., 1970. Google ScholarGoogle Scholar
  16. 16 LAGRANGE, J.L. Oeuvres de Lagrange, Tome $ Gauthmr-Vlllars, Parm, 1868, pp. 267-272.Google ScholarGoogle Scholar
  17. 17 LEGENDRE, A.M Exercwes de CalculIntegral, Vol. 1. Paris, 1811, p. 61.Google ScholarGoogle Scholar
  18. 18 SALAMIN, E. Computation of ~ using arithmetic-geometric mean. To appear in Math. Comput.Google ScholarGoogle Scholar
  19. 19 SCHOSHAGE, A., ASD STRASSEN, V. Schnelle Multiphkation grosset Zahlen. Computing 7 (1971), 281-292.Google ScholarGoogle Scholar
  20. 20 SCHROEPPEL, R. Unpubhshed manuscript dated May 1975Google ScholarGoogle Scholar
  21. 21 SHAs~:S, D., AND WRENCH, J.W. CMculatmn of v to 100,000 decorums. Ma~h Compug. 16 (1962), 76-99.Google ScholarGoogle Scholar
  22. 22 SWEENEY, D W. On the computatmn of Euler's constant Math. Comput. 17 (1963), 170-178.Google ScholarGoogle Scholar
  23. 23 THACHER, H.C. iterated square root expansions for the inverse cosine and inverse hyperbolic cosine. Math. Comput. 15 (1961), 399--403.Google ScholarGoogle Scholar

Index Terms

  1. Fast Multiple-Precision Evaluation of Elementary Functions

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image Journal of the ACM
          Journal of the ACM  Volume 23, Issue 2
          April 1976
          176 pages
          ISSN:0004-5411
          EISSN:1557-735X
          DOI:10.1145/321941
          Issue’s Table of Contents

          Copyright © 1976 ACM

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 1 April 1976
          Published in jacm Volume 23, Issue 2

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader