skip to main content
research-article

CLASENTI: A Class-Specific Sentiment Analysis Framework

Published:21 July 2018Publication History
Skip Abstract Section

Abstract

Arabic text sentiment analysis suffers from low accuracy due to Arabic-specific challenges (e.g., limited resources, morphological complexity, and dialects) and general linguistic issues (e.g., fuzziness, implicit sentiment, sarcasm, and spam). The limited resources problem requires efforts to build new and improved Arabic corpora and lexica. We propose a class-specific sentiment analysis (CLASENTI) framework. The framework includes a new annotation approach to build multi-faceted Arabic corpus and lexicon allowing for simultaneous annotation of different facets, including domains, dialects, linguistic issues, and polarity strengths. Each of these facets has multiple classes (e.g., the nine classes representing dialects found in the Arab world). The new corpus and lexicon annotations facilitate the development of new class-specific classification models and polarity strength calculation. For the new sentiment classification models, we propose a hybrid model combining corpus-based and lexicon-based models. The corpus-based model has two interrelated phases to build; (1) full-corpus classification models for all facets; and (2) class-specific models trained on filtered subsets of the corpus according to the performances of the full-corpus models. To calculate polarity strengths, the lexicon-based model filters the annotated lexicon based on the specific classes of the domain and dialect. As a case study, we collect and annotate 15274 reviews from various sources, including surveys, Facebook comments, and Twitter posts, pertaining to governmental services. In addition, we develop a new web-based application to apply the proposed framework on the case study. CLASENTI framework reaches up to 95% accuracy and 93% F1-Score surpassing the best-known sentiment classifiers implemented in Scikit-learn library that achieve 82% accuracy and 81% F1-Score for Arabic when tested on the same dataset.

References

  1. O. Abdelwahab, M. Bahgat, C. J. Lowrance, and A. Elmaghraby. 2015. Effect of training set size on SVM and naive Bayes for Twitter sentiment analysis. In Proceedings of the IEEE International Symposium on Signal Processing and Information Technology (ISSPIT’15). IEEE, 46--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. M. Abdul-mageed and M. Diab. 2012. Toward building a large-scale Arabic sentiment lexicon. In Proceedings of the 6th International Global WordNet Conference. 18--22.Google ScholarGoogle Scholar
  3. M. Abdul-mageed, M. Diab, and S. Kübler. 2014. SAMAR: Subjectivity and sentiment analysis for Arabic social media. Comput. Speech Lang. 28, 20--37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M. Abdul-mageed and M. T. Diab. 2012. AWATIF: A multi-genre corpus for modern standard arabic subjectivity and sentiment analysis. In Proceedings of the LREC International Conference on Language Resources and Evaluation. 3907--3914.Google ScholarGoogle Scholar
  5. M. Abdul-mageed and M. T. Diab. 2014. SANA: A large scale multi-genre, multi-dialect lexicon for arabic subjectivity and sentiment analysis. In Proceedings of the LREC 9th International Conference on Language Resources and Evaluation. 1162--1169.Google ScholarGoogle Scholar
  6. M. Abdul-mageed, M. T. Diab, and M. Korayem. 2011. Subjectivity and sentiment analysis of modern standard arabic. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics. 587--591. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. Abdul-mageed and M. Korayem. 2010. Automatic identification of subjectivity in morphologically rich languages: The case of arabic. In Proceedings of the 1st Workshop on Computational Approaches to Subjectivity and Sentiment Analysis (WASSA’10). 2--6.Google ScholarGoogle Scholar
  8. M. Abdul-mageed, S. Kübler, and M. Diab. 2012. Samar: A system for subjectivity and sentiment analysis of arabic social media. In Proceedings of the 3rd Workshop in Computational Approaches to Subjectivity and Sentiment Analysis. Association for Computational Linguistics, 19--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. N. Abdulla, N. Ahmed, M. Shehab, and M. Al-ayyoub. 2013. Arabic sentiment analysis: Lexicon-based and corpus-based. In Proceedings of the IEEE Applied Electrical Engineering and Computing Technologies (AEECT13). 1--6.Google ScholarGoogle Scholar
  10. N. Ahmed. 2018. Large-scale arabic sentiment corpus and lexicon building for concept-based sentiment analysis systems. Doctor of Philosophy in Computer Engineering, Hacettepe University Turkey. Retrieved from http://www.openaccess.hacettepe.edu.tr:8080/xmlui/bitstream/handle/11655/4170/10176094.pdf?sequence=18isAllowed=y.Google ScholarGoogle Scholar
  11. A. J. S. Al mukhaiti, S. Siddiqui, and K. Shaalan. 2017. Dataset built for arabic sentiment analysis. In Proceedings of the International Conference on Advanced Intelligent Systems and Informatics. Springer, 406--416.Google ScholarGoogle Scholar
  12. M. N. Al-kabi, I. M. Alsmadi, A. H. Gigieh, H. A. Wahsheh, and M. M. Haidar. 2014. Opinion mining and analysis for arabic language. Int. J. Adv. Comput. Sci. Appl. 5, 181--195.Google ScholarGoogle Scholar
  13. R. Al-Sabbagh and R. Girju. 2012. YADAC: Yet another dialectal arabic corpus. In Proceedings of the LREC International Conference on Language Resources and Evaluation. 2882--2889.Google ScholarGoogle Scholar
  14. A. Al-Sallab, R. Baly, H. Hajj, K. B. Shaban, W. El-Hajj, and G. Badaro. 2017. AROMA: A recursive deep learning model for opinion mining in arabic as a low resource language. ACM Trans. Asian Low-Res. Lang. Info. Process. 16, 25. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. M. Al-Smadi, B. Talafha, M. Al-ayyoub, and Y. Jararweh. 2018. Using long short-term memory deep neural networks for aspect-based sentiment analysis of Arabic reviews. Int. J. Mach. Learn. Cybernet. 1--13.Google ScholarGoogle Scholar
  16. S. S. Alotaibi. 2015. Sentiment analysis in the arabic language using machine learning. Colorado State University. Libraries.Google ScholarGoogle Scholar
  17. S. S. Alotaibi and C. W. Anderson. 2016. Extending the knowledge of the arabic sentiment classification using aforeign external lexical source. In International Journal on Natural Language Computing (IJNLC'16) 5, 3 (2016), 1--11.Google ScholarGoogle Scholar
  18. M. A. Aly and A. F. Atiya. 2013. LABR: A large scale arabic book reviews dataset. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Vol. 2. 494--498.Google ScholarGoogle Scholar
  19. G. Badaro, R. Baly, H. Hajj, N. Habash, and W. El-hajj. 2014. A large scale Arabic sentiment lexicon for Arabic opinion mining. In Proceedings of the EMNLP 2014 Workshop on Arabic Natural Language Processing (ANLP'14). 165--173.Google ScholarGoogle Scholar
  20. R. Baly, G. Badaro, A. Hamdi, R. Moukalled, R. Aoun, G. El-khoury, A. El-sallab, H. Hajj, N. Habash. and K. Bashir Shaban. 2017. OMAM at semeval-2017 task 4: Evaluation of english state-of-the-art sentiment analysis models for arabic and a new topic-based model. In Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval’17). Association for Computational Linguistics, 594--601.Google ScholarGoogle Scholar
  21. R. Baly, H. Hajj, N. Habash, K. B. Shaban, and W. El-hajj. 2017. A sentiment treebank and morphologically enriched recursive deep models for effective sentiment analysis in arabic. ACM Trans. Asian Low-Res. Lang. Info. Process. 16, 23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. W. Boag, P. Potash and A. Rumshisky. 2015. Twitter-hawk: A feature bucket approach to sentiment analysis. Proceedings of the International Workshop on Semantic Evaluations (SemEval’15). 640--646.Google ScholarGoogle Scholar
  23. E. Cambria, S. Poria, R. Bajpai, and B. Schuller. 2016. SenticNet 4: A semantic resource for sentiment analysis based on conceptual primitives. In Proceedings of the 26th International Conference on Computational Linguistics: Technical Papers (COLING 2016). 2666--2677.Google ScholarGoogle Scholar
  24. C. Catal and M. Nangir. 2017. A sentiment classification model based on multiple classifiers. Appl. Soft Comput. 50, 135--141. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. 2002. SMOTE: Synthetic minority over-sampling technique. J. Artific. Intell. Res. 16, 321--357. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. H. Chen, W. Chung, J. J. Xu, G. Wang, Y. Qin, and M. Chau. 2004. Crime data mining: A general framework and some examples. Computer 37, 50--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. J. M. Cotelo, F. L. Cruz, F. Enríquez, and J. Troyano. 2016. Tweet categorization by combining content and structural knowledge. Info. Fusion 31, 54--64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. R. Cotterell and C. Callison-burch. 2014. A multi-dialect, multi-genre corpus of informal written Arabic. In Proceedings of the Language Resources and Evaluation Conference (LREC’14).Google ScholarGoogle Scholar
  29. M. Diab, N. Habash, O. Rambow, M. Altantawy, and Y. Benajiba. 2010. COLABA: Arabic dialect annotation and processing. In Proceedings of the LREC Workshop on Semitic Language Processing. 66--74.Google ScholarGoogle Scholar
  30. A. Eesee and N. Omar. 2016. A hybrid method for arabic educational sentiment analysis. J. Appl. Sci. 16, 216.Google ScholarGoogle ScholarCross RefCross Ref
  31. A. El-halees and others. 2011. Arabic opinion mining using combined classification approach. In Proceedings of the 12th International Arab Conference on Information Technology. Naif Arab University for Security Sciences, 264--271. http://repository.nauss.edu.sa/handle/123456789/55412.Google ScholarGoogle Scholar
  32. H. Elfardy and M. T. Diab. 2013. Sentence level dialect identification in arabic. Assoc. Comput. Ling. 2, 456--461.Google ScholarGoogle Scholar
  33. H. Elsahar and S. R. El-beltagy. 2015. Building large arabic multi-domain resources for sentiment analysis. In International Conference on Intelligent Text Processing and Computational Linguistics. Springer, 23--34.Google ScholarGoogle Scholar
  34. A. Esuli and F. Sebastiani. 2006. Sentiwordnet: A publicly available lexical resource for opinion mining. In Proceedings of the 5th edition of the International Conference on Language Ressources and Evaluation (LREC’06). Citeseer, 417--422.Google ScholarGoogle Scholar
  35. R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. 2008. LIBLINEAR: A library for large linear classification. J. Mach. Learn. Res 9, 1871--1874. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. N. Farra, E. Challita, R. A. Assi, and H. Hajj. 2010. Sentence-level and document-level sentiment mining for Arabic texts. In Proceedings of the IEEE International Conference on Data Mining Workshops (ICDMW’10). IEEE, 1114--1119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. E. Ferrara, W.-Q. Wang, O. Varol, A. Flammini, and A. Galstyan. 2016. Predicting online extremism, content adopters, and interaction reciprocity. In Proceedings of the International Conference on Social Informatics. Springer, 22--39.Google ScholarGoogle Scholar
  38. A. B. Goldberg and X. Zhu. 2006. Seeing stars when there aren't many stars: graph-based semi-supervised learning for sentiment categorization. In Proceedings of the 1st Workshop on Graph Based Methods for Natural Language Processing. Association for Computational Linguistics, 45--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. N. Y. Habash. 2010. Introduction to arabic natural language processing. Synth. Lect. Human Lang. Technol. 3, 1--187.Google ScholarGoogle ScholarCross RefCross Ref
  40. A. Hamdi, K. Shaban, and A. Zainal. 2016. A review on challenging issues in arabic sentiment analysis. J. Comput. Sci. 12, 471--481.Google ScholarGoogle ScholarCross RefCross Ref
  41. L. Hamers, Y. Hemeryck, G. Herweyers, M. Janssen, H. Keters, R. Rousseau, and A. Vanhoutte. 1989. Similarity measures in scientometric research: The jaccard index versus salton's cosine formula. Info. Process. Manage. 25, 315--318. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. M. Hammad and E. Hemayed. 2013. Automating credibility assessment of arabic news. In Proceedings of the 5th International Conference on Social Informatics. Springer, 139--152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. H. Han, W.-Y. Wang, and B.-H. Mao. 2005. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. In Proceedings of the International Conference on Intelligent Computing Springer, 878--887. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. V. Hatzivassiloglou and K. R. Mckeown. 1997. Predicting the semantic orientation of adjectives. In Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and Eighth Conference of the European Chapter of the Association for Computational Linguistics. Association for Computational Linguistics, 174--181. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. H. S. Ibrahim, S. M. Abdou, and M. Gheith. 2015. Sentiment analysis for modern standard arabic and colloquial. ArXiv Preprint Arxiv:1505.03105.Google ScholarGoogle Scholar
  46. H. Kanayama and T. Nasukawa. 2006. Fully automatic lexicon expansion for domain-oriented sentiment analysis. In Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 355--363. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. M. Karanasou, C. Doulkeridis, and M. Halkidi. 2015. DsUniPi: An SVM-based approach for sentiment analysis of figurative language on twitter. In Proceedings of the SemEval@ NAACL-HLT, 709--713.Google ScholarGoogle Scholar
  48. M. Korayem, D. Crandall, and M. Abdul-mageed. 2012. Subjectivity and sentiment analysis of arabic: A survey. In International Conference on Advanced Machine Learning Technologies and Applications. Springer, 128--139.Google ScholarGoogle Scholar
  49. M. Kubat and S. Matwin. 1997. Addressing the curse of imbalanced training sets: One-sided selection. In Proceedings of the ICML 14th International Conference on Machine Learning. 179--186.Google ScholarGoogle Scholar
  50. A. Kumar, O. Irsoy, J. Su, J. Bradbury, R. English, B. Pierce, P. Ondruska, I. Gulrajani, and R. Socher. 2015. Ask me anything: Dynamic memory networks for natural language processing. CoRR, abs/1506.07285.Google ScholarGoogle Scholar
  51. J. Laurikkala. 2001. Improving identification of difficult small classes by balancing class distribution. In Proceedings of the 8th Conference on Artificial Intelligence in Medicine in Europe. Springer, 63--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. T. Li, Y. Zhang, and V. Sindhwani. 2009. A non-negative matrix tri-factorization approach to sentiment classification with lexical prior knowledge. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language. Association for Computational Linguistics, 244--252. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. B. Liu. 2012. Sentiment analysis and opinion mining. Synth. Lect. Human Lang. Technol. 5, 1--167. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. L. Lusa. 2012. Evaluation of smote for high-dimensional class-imbalanced microarray data. In Proceedings of the 11th International Conference on Machine Learning and Applications (ICMLA’12). IEEE, 89--94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. I. Mani and I. Zhang. 2003. kNN approach to unbalanced data distributions: A case study involving information extraction. In Proceedings of Workshop on Learning From Imbalanced Datasets.Google ScholarGoogle Scholar
  56. C. D. Manning, P. Raghavan, and H. Schütze. 2008. Introduction to Information Retrieval. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. W. Medhat, A. Hassan, and H. Korashy. 2014. Sentiment analysis algorithms and applications: A survey. Ain Shams Eng. J. 5, 1093--1113.Google ScholarGoogle ScholarCross RefCross Ref
  58. G. A. Miller. 1995. WordNet: A lexical database for english. Commun. ACM 38, 39--41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. A. Mourad and K. Darwish. 2013. Subjectivity and sentiment analysis of modern standard arabic and arabic microblogs. In Proceedings of the 4th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, 55--64.Google ScholarGoogle Scholar
  60. A. Mukwazvure and K. Supreethi. 2015. A hybrid approach to sentiment analysis of news comments. In Proceedings of the 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO’15). IEEE, 1--6.Google ScholarGoogle Scholar
  61. M. Nabil, M. Aly, and A. F. Atiya. 2015. ASTD: Arabic sentiment tweets dataset. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. 2515--2519.Google ScholarGoogle Scholar
  62. D. Najar and S. Mesfar. 2017. Opinion mining and sentiment analysis for arabic on-line texts: Application on the political domain. International Journal of Speech Technology 20, 575--585. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. H. M. Nguyen, E. W. Cooper and K. Kamei. 2011. Borderline over-sampling for imbalanced data classification. Int. J. Knowl. Eng. Soft Data Parad. 3, 4--21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. H. Pajupuu, R. Altrov, and J. Pajupuu. 2016. Identifying polarity in different text types. Folklore: Electronic Journal of Folklore 64 (2016), 126--138.Google ScholarGoogle Scholar
  65. B. Pang and L. Lee. 2008. Opinion mining and sentiment analysis. Found. Trends Info. Retriev. 2, 1--135. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825--2830. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. R. Prabowo and M. Thelwall. 2009. Sentiment analysis: A combined approach. J. Informetr. 3, 143--157.Google ScholarGoogle ScholarCross RefCross Ref
  68. E. Refaee and V. Rieser. 2014. An arabic twitter corpus for subjectivity and sentiment analysis. In Proceedings of the 9th International Conference on Language Resources and Evaluation (LREC’14). European Language Resources Association.Google ScholarGoogle Scholar
  69. E. Refaee and V. Rieser. 2015. Benchmarking machine translated sentiment analysis for arabic tweets. In Proceedings of the NAACL-HLT 2015 Student Research Workshop (SRW’15). 71.Google ScholarGoogle Scholar
  70. V. G. C. RM. 2014. Performance evaluation of machine learning classifiers in sentiment mining. ArXiv Preprint Arxiv:1402.3891.Google ScholarGoogle Scholar
  71. M. Romanov. 2013. Toward the digital history of the pre-modern muslim world: Developing text-mining techniques for the study of arabic biographical collections. Compar. Oriental Manuscript Studies Newslett. 4.Google ScholarGoogle Scholar
  72. M. Rushdi-saleh, M. T. Martín-valdivia, L. A. Ureña-lópez, and J. M. Perea-ortega. 2011. Bilingual experiments with an arabic-english corpus for opinion mining. In Proceedings of the International Conference Recent Advances in Natural Language Processing 2011. 740--745.Google ScholarGoogle Scholar
  73. M. Rushdi-saleh, M. T. Martín Valdivia, L. A. Ureña lópez, and J. M. Perea Ortega. 2011. OCA: Opinion corpus for Arabic. J. Amer. Soc. Info. Sci. Technol. 62, 2045--2054. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. J. A. Sáez, B. Krawczyk, and M. Woźniak. 2016. Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets. Pattern Recogn. 57, 164--178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Olena Kummer, Jacques Savoy, and Rue Emile Argand. 2012. Feature selection in sentiment analysis. In Proceedings of the CORIA 2012, 9th Information Retrieval Conference. Citeseer, Bordeaux, France.Google ScholarGoogle Scholar
  76. M. A. Shehab, O. Badarneh, M. Al-ayyoub, and Y. Jararweh. 2016. A supervised approach for multi-label classification of arabic news articles. In Proceedings of the 7th International Conference on Computer Science and Information Technology (CSIT’16). IEEE, 1--6.Google ScholarGoogle Scholar
  77. A. M. Shoukry. 2013. Arabic sentence level sentiment analysis. Thesis. The American University in Cairo.Google ScholarGoogle Scholar
  78. N. F. F. D. Silva, L. F. Coletta, and E. R. Hruschka. 2016. A survey and comparative study of tweet sentiment analysis via semi-supervised learning. ACM Comput. Surveys 49, 15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. V. Sindhwani and P. Melville. 2008. Document-word co-regularization for semi-supervised sentiment analysis. In Proceedings of the 8th IEEE International Conference on Data Mining (ICDM'08). IEEE, 1025--1030. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and C. Potts. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP’13). 1642.Google ScholarGoogle Scholar
  81. K. Sparck Jones. 1972. A statistical interpretation of term specificity and its application in retrieval. J. Document. 28, 11--21.Google ScholarGoogle ScholarCross RefCross Ref
  82. Miniwatts Marketing Group. 2016. Internet World Users By Language - Top 10 Languages. https://www.internetworldstats.com/stats7.htm.Google ScholarGoogle Scholar
  83. Y. Sun, A. K. Wong, and M. S. Kamel. 2009. Classification of imbalanced data: A review. Int. J. Pattern Recogn. Artific. Intell. 23, 687--719.Google ScholarGoogle ScholarCross RefCross Ref
  84. M. Taboada, J. Brooke, M. Tofiloski, K. Voll, and M. Stede. 2011. Lexicon-based methods for sentiment analysis. Comput. Linguist. 37, 267--307. Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. K. Taghva, R. Elkhoury, and J. S. Coombs. 2005. Arabic stemming without a root dictionary. In Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC'05). 152--157. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. I. Tomek. 1976. Two modifications of CNN. IEEE Trans. Syst., Man Cybernet. 6, 769--772.Google ScholarGoogle Scholar
  87. P. D. Turney. 2002. Thumbs up or thumbs down?: Semantic orientation applied to unsupervised classification of reviews. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 417--424. Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. A. Yousefpour, R. Ibrahim, and H. N. Abdull hamed. 2014. A novel feature reduction method in sentiment analysis. International Journal of Innovative Computing 4, 1 (2014), 34--40.Google ScholarGoogle Scholar
  89. O. F. Zaidan and C. Callison-burch. 2011. The arabic online commentary dataset: An annotated dataset of informal arabic with high dialectal content. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, 37--41. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. CLASENTI: A Class-Specific Sentiment Analysis Framework

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Asian and Low-Resource Language Information Processing
        ACM Transactions on Asian and Low-Resource Language Information Processing  Volume 17, Issue 4
        December 2018
        193 pages
        ISSN:2375-4699
        EISSN:2375-4702
        DOI:10.1145/3229525
        Issue’s Table of Contents

        Copyright © 2018 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 21 July 2018
        • Revised: 1 April 2018
        • Accepted: 1 April 2018
        • Received: 1 May 2017
        Published in tallip Volume 17, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader