skip to main content
research-article

Quantum Circuit Synthesis Targeting to Improve One-Way Quantum Computation Pattern Cost Metrics

Published:21 May 2017Publication History
Skip Abstract Section

Abstract

One-way quantum computation (1WQC) is a model of universal quantum computations in which a specific highly entangled state called a cluster state allows for quantum computation by single-qubit measurements. The needed computations in this model are organized as measurement patterns. The traditional approach to obtain a measurement pattern is by translating a quantum circuit that solely consists of CZ and J(α) gates into the corresponding measurement patterns and then performing some optimizations by using techniques proposed for the 1WQC model. However, in these cases, the input of the problem is a quantum circuit, not an arbitrary unitary matrix. Therefore, in this article, we focus on the first phase—that is, decomposing a unitary matrix into CZ and J(α) gates. Two well-known quantum circuit synthesis methods, namely cosine-sine decomposition and quantum Shannon decomposition are considered and then adapted for a library of gates containing CZ and J(α), equipped with optimizations. By exploring the solution space of the combinations of these two methods in a bottom-up approach of dynamic programming, a multiobjective quantum circuit synthesis method is proposed that generates a set of quantum circuits. This approach attempts to simultaneously improve the measurement pattern cost metrics after the translation from this set of quantum circuits.

References

  1. M. Arabzadeh, M. Houshmand, M. Sedighi, and M. Saheb Zamani. 2015. Quantum-logic synthesis of Hermitian gates. ACM Journal of Emerging Technologies in Computing Systems 12, 4, Article No. 40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. D. Bacon. 2006. Operator quantum error-correcting subsystems for self-correcting quantum memories. Physical Review A 73, 1, 012340-1--012340-13. Google ScholarGoogle ScholarCross RefCross Ref
  3. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter. 1995. Elementary gates for quantum computation. Physical Review A 52, 5, 3457--3467. Google ScholarGoogle ScholarCross RefCross Ref
  4. S. Barz, J. Fitzsimons, E. Kashefi, and P. Walther. 2013. Experimental verification of quantum computation. Nature Physics 9, 11, 727--731.Google ScholarGoogle ScholarCross RefCross Ref
  5. V. Bergholm, J. J. Vartiainen, M. Möttönen, and M. M. Salomaa. 2005. Quantum circuits with uniformly controlled one-qubit gates. Physical Review A 71, 052330. Google ScholarGoogle ScholarCross RefCross Ref
  6. H. J. Briegel, D. E. Browne, W. Dur, R. Raussendorf, and M. Van den Nest. 2009. Measurement-based quantum computation. Nature Physics 5, 19--26.Google ScholarGoogle ScholarCross RefCross Ref
  7. A. Broadbent, J. Fitzsimons, and E. Kashefi. 2009. Universal blind quantum computation. In Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS’09). IEEE, Los Alamitos, CA, 517--526. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. A. Broadbent and E. Kashefi. 2009. Parallelizing quantum circuits. Theoretical Computer Science 410, 26, 2489--2510. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. D. Browne and H. J. Briegel. 2006. One-way quantum computation—a tutorial introduction. arXiv:quant-ph/0603226.Google ScholarGoogle Scholar
  10. D. Browne, E. Kashefi, M. Mhalla, and S. Perdrix. 2007. Generalized flow and determinism in measurement-based quantum computation. New Journal of Phys 9, 1--16. Google ScholarGoogle ScholarCross RefCross Ref
  11. S. S. Bullock and I. L. Markov. 2003. An elementary two-qubit quantum computation in 23 elementary gates. Physical Review A 68, 012318--012325. Google ScholarGoogle ScholarCross RefCross Ref
  12. S. S. Bullock and I. L. Markov. 2004. Asymptotically optimal circuits for arbitrary n-qubit diagonal computations. Quantum Information and Computation 4, 1, 27--47.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. 2009. Introduction to Algorithms. MIT Press, Cambridge, MA.Google ScholarGoogle Scholar
  14. G. Cybenko. 2001. Reducing quantum computations to elementary unitary operations. Computing in Science and Engineering 3, 2, 27--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. V. Danos, E. Kashefi, and P. Panangaden. 2005. Parsimonious and robust realizations of unitary maps in the one-way model. Physical Review A 72, 5, 3824--3851. DOI:http://dx.doi.org/10.1103/PhysRevA.54.3824 Google ScholarGoogle ScholarCross RefCross Ref
  16. V. Danos, E. Kashefi, and P. Panangaden. 2007. The measurement calculus. Journal of ACM 54, 2, Article No. 8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. V. Danos, E. Kashefi, P. Panangaden, and S. Perdrix. 2009. Extended measurement calculus. In Semantic Techniques in Quantum Computation, S. Gay and I. Mackie (Eds.). Cambridge University Press, Cambridge, MA, 235--310. Google ScholarGoogle ScholarCross RefCross Ref
  18. D. Deutsch. 1989. Quantum computational networks. Proceedings of the Royal Society A 425, 1868, 73--90. Google ScholarGoogle ScholarCross RefCross Ref
  19. R. Dias da Silva and E. F. Galvo. 2013. Compact quantum circuits from one-way quantum computation. Physical Review A 88, 012319. Google ScholarGoogle ScholarCross RefCross Ref
  20. R. Dias da Silva, E. Pius, and E. Kashefi. 2015. Global quantum circuit optimization. arXiv:1301.0351.Google ScholarGoogle Scholar
  21. M. Eslamy, M. Houshmand, M. Saheb Zamani, and M. Sedighi. 2016. Geometry-based signal shifting of one-way quantum computation measurement patterns. In Proceedings of the 24th Iranian Conference on Electrical Engineering (ICEE’16). Google ScholarGoogle ScholarCross RefCross Ref
  22. A. G. Fowler. 2011. Constructing arbitrary Steane code single logical qubit fault-tolerant gates. Quantum Information and Computation 11, 9--10, 867--873.Google ScholarGoogle Scholar
  23. A. G. Fowler, A. M. Stephens, and P. Groszkowski. 2009. High-threshold universal quantum computation on the surface code. Physical Review A 80, 052312-1--052312-14. Google ScholarGoogle ScholarCross RefCross Ref
  24. B. Giles and P. Selinger. 2013. Exact synthesis of multiqubit Clifford+T circuits. Physical Review A 87, 032332. Google ScholarGoogle ScholarCross RefCross Ref
  25. T. Hogg, C. Mochon, W. Polak, and E. Rieffel. 1999. Tools for quantum algorithms. International Journal of Modern Physics C 10, 1, 1347--1361. Google ScholarGoogle ScholarCross RefCross Ref
  26. M. Houshmand, M. Saheb Zamani, M. Sedighi, and M. Arabzadeh. 2014a. Decomposition of diagonal Hermitian quantum gates using multiple-controlled Pauli Z gates. ACM Journal of Emerging Technologies in Computing Systems 11, 3, Article No. 28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. M. Houshmand, M. Saheb Zamani, M. Sedighi, and M. H. Samavatian. 2014b. Automatic translation of quantum circuits to optimized one-way quantum computation patterns. Quantum Information Processing 13, 11, 2463--2482. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. R. Jozsa. 2006. An introduction to measurement-based quantum computation. NATO Science Series, III: Computer and Systems Sciences. Quantum Information Processing—From Theory to Experiment 69, 20, 137--158.Google ScholarGoogle Scholar
  29. V. Kliuchnikov, D. Maslov, and M. Mosca. 2013. Fast and efficient exact synthesis of single-qubit unitaries generated by Clifford and T gates. Quantum Information and Computation 13, 7--8, 607--630.Google ScholarGoogle Scholar
  30. A. Konak, D. W Coit, and A. E Smith. 2006. Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering and System Safety 91, 9, 992--1007. Google ScholarGoogle ScholarCross RefCross Ref
  31. Ch. Lin and A. Chakrabarti. 2014. FTQLS: Fault-tolerant quantum logic synthesis. IEEE Transactions on VLSI Systems 22, 6, 1350--1363. Google ScholarGoogle ScholarCross RefCross Ref
  32. M. Mhalla and S. Perdrix. 2008a. Finding optimal flows efficiently. In Proceedings of the 35th International Colloquium on Automata, Languages, and Programming (ICALP’08). 857--868.Google ScholarGoogle Scholar
  33. M. Mhalla and S. Perdrix. 2008b. Finding optimal flows efficiently. In Proceedings of the 35th International Colloquium on Automata, Languages, and Programming (ICALP’08). 857--868. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. J. Miyazaki, M. Hajdusek, and M. Murao. 2010. Rewriting measurement-based quantum computations with generalised flow. In Automata, Languages and Programming. Lecture Notes in Computer Science, Vol. 91. Springer, 285--296.Google ScholarGoogle Scholar
  35. J. Miyazaki, M. Hajdusek, and M. Murao. 2015. An analysis of the trade-off between spatial and temporal resources for measurement-based quantum computation. Physical Review A 91, 052302. Google ScholarGoogle ScholarCross RefCross Ref
  36. M. Möttönen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa. 2004. Quantum circuits for general multiqubit gates. Physical Review Letters 93, 13, 130502.Google ScholarGoogle ScholarCross RefCross Ref
  37. N. de Beaudrap, V. Danos, and E. Kashefi. 2006. Phase map decomposition for unitaries. arXiv:quant-ph/0603266.Google ScholarGoogle Scholar
  38. M. A. Nielsen and I. L. Chuang. 2010. Quantum Computation and Quantum Information (10th anniversary ed.). Cambridge University Press, Cambridge, UK.Google ScholarGoogle Scholar
  39. E. Nikahd, M. Houshmand, M. Saheb Zamani, and M. Sedighi. 2012. OWQS: One-way quantum computation simulator. In Proceedings of the 2012 15th Euromicro Conference on Digital System Design (DSD’12). IEEE, Los Alamitos, CA, 98--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. E. Nikahd, M. Houshmand, M. Saheb Zamani, and M. Sedighi. 2015. One-way quantum computer simulation. Microprocessors and Microsystems 39, 3, 210--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. E. Nikahd, M. Houshmand, M. Saheb Zamani, and M. Sedighi. 2016. GOWQS: Graph-based one-way quantum computation simulator. In Proceedings of the 24th Iranian Conference on Electrical Engineering (ICEE’16). Google ScholarGoogle ScholarCross RefCross Ref
  42. E. Pius. 2010. Automatic Parallelisation of Quantum Circuits Using the Measurement-Based Quantum Computing Model. Master’s thesis. University of Edinburgh.Google ScholarGoogle Scholar
  43. R. Raussendorf. 2012. Measurement-Based Quantum Computation with Cluster States. Ph.D. Dissertation. Ludwig-Maximilians-Universitat Munich.Google ScholarGoogle Scholar
  44. R. Raussendorf and H. J. Briegel. 2001. A one-way quantum computer. Physical Review Letters 86, 22, 5188--5191. Google ScholarGoogle ScholarCross RefCross Ref
  45. M. Saeedi, M. Arabzadeh, M. Saheb Zamani, and M. Sedighi. 2011. Block-based quantum-logic synthesis. Quantum Information and Computation 11, 3--4, 262--277.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. M. Saeedi and I. L. Markov. 2013. Synthesis and optimization of reversible circuits—a survey. ACM Computing Surveys 45, 2, Article No. 21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. V. V. Shende, S. S. Bullock, and I. L. Markov. 2006. Synthesis of quantum-logic circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 25, 6, 1000--1010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. V. V. Shende and I. L. Markov. 2009. On the CNOT-cost of Toffoli gates. Quantum Information and Computation 9, 5--6, 461--486.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. V. V. Shende, I. L. Markov, and S. S. Bullock. 2004a. Minimal universal two-qubit quantum circuits. Physical Review A 69, 062321. Google ScholarGoogle ScholarCross RefCross Ref
  50. V. V. Shende, I. L. Markov, and S. S. Bullock. 2004b. Smaller two-qubit circuits for quantum communication and computation. In Proceedings of the Conference on Design, Automation, and Test in Europe (DATE’04). 980--985. Google ScholarGoogle ScholarCross RefCross Ref
  51. G. Song and A. Klappenecker. 2003. Optimal realizations of controlled unitary gates. Quantum Information and Computation 3, 2, 139--155.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. A. M. Steane. 1996. Error correcting codes in quantum theory. Physical Review Letters 77, 5, 793--797. Google ScholarGoogle ScholarCross RefCross Ref
  53. J. J. Vartiainen, M. Möttönen, and M. M. Salomaa. 2004. Efficient decomposition of quantum gates. Physical Review Letters 92, 177902. Google ScholarGoogle ScholarCross RefCross Ref
  54. F. Vatan and C. Williams. 2004. Optimal quantum circuits for general two-qubit gates. Physical Review A 69, 032315. Google ScholarGoogle ScholarCross RefCross Ref
  55. G. Vidal and C. M. Dawson. 2004. A universal quantum circuit for two-qubit transformations with three CNOT gates. Physical Review A 69, 010301. Google ScholarGoogle ScholarCross RefCross Ref
  56. P. Walther, K. J. Resch, T. Rudolph, and E. Schenck. 2005. Experimental one-way quantum computing. Nature 434, 169--176. Google ScholarGoogle ScholarCross RefCross Ref
  57. D. S. Wang, A. G. Fowler, and L. C. L. Hollenberg. 2011. Surface code quantum computing with error rates over 1. Physical Review A 83, 020302-1--020302-4. Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Quantum Circuit Synthesis Targeting to Improve One-Way Quantum Computation Pattern Cost Metrics

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Journal on Emerging Technologies in Computing Systems
      ACM Journal on Emerging Technologies in Computing Systems  Volume 13, Issue 4
      October 2017
      267 pages
      ISSN:1550-4832
      EISSN:1550-4840
      DOI:10.1145/3098274
      • Editor:
      • Yuan Xie
      Issue’s Table of Contents

      Copyright © 2017 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 21 May 2017
      • Accepted: 1 January 2017
      • Revised: 1 November 2016
      • Received: 1 July 2016
      Published in jetc Volume 13, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader