skip to main content
research-article

Fast Weather Simulation for Inverse Procedural Design of 3D Urban Models

Published:07 April 2017Publication History
Skip Abstract Section

Abstract

We present the first realistic, physically based, fully coupled, real-time weather design tool for use in urban procedural modeling. We merge designing of a 3D urban model with a controlled long-lasting spatiotemporal interactive simulation of weather. Starting from the fundamental dynamical equations similar to those used in state-of-the-art weather models, we present a novel simplified urban weather model for interactive graphics. Control of physically based weather phenomena is accomplished via an inverse modeling methodology. In our results, we present several scenarios of forward design, inverse design with high-level and detailed-level weather control and optimization, and comparisons of our method against well-known weather simulation results and systems.

Skip Supplemental Material Section

Supplemental Material

tog-07.mp4

mp4

545.4 MB

References

  1. Nash’at Ahmad and John Lindeman. 2007. Euler solutions using flux-based wave decomposition. International Journal for Numerical Methods in Fluids 54, 1, 47--72.Google ScholarGoogle ScholarCross RefCross Ref
  2. Ryoichi Ando, Nils Thuerey, and Chris Wojtan. 2015. A stream function solver for liquid simulations. ACM Transactions on Graphics 34, 4, 53. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Akio Arakawa and Vivian R. Lamb. 1977. Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Computational Physics 17, 173--265.Google ScholarGoogle Scholar
  4. S. Pal Arya. 1999. Air Pollution Meteorology and Dispersion. Oxford University Press, New York, NY.Google ScholarGoogle Scholar
  5. Dale Barker, Xiang-Yu Huang, Zhiquan Liu, Tom Auligné, Xin Zhang, Steven Rugg, Raji Ajjaji, et al. 2012. The Weather Research and Forecasting model’s community variational/ensemble data assimilation system: WRFDA. Bulletin of the American Meteorological Society 93, 6, 831--843.Google ScholarGoogle ScholarCross RefCross Ref
  6. A. K Blackadar. 1978. Modeling pollutant transfer during daytime convection. In Proceedings of the 4th Symposium on Turbulence, Diffusion, and Air Pollution. 443--447.Google ScholarGoogle Scholar
  7. James F. Blinn. 1982. Light reflection functions for simulation of clouds and dusty surfaces. ACM SIGGRAPH Computer Graphics 16, 3, 21--29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Howard B. Bluestein and Carlton R. Parks. 1983. A synoptic and photographic climatology of low-precipitation severe thunderstorms in the southern plains. Monthly Weather Review 111, 10, 2034--2046.Google ScholarGoogle ScholarCross RefCross Ref
  9. Martin Bokeloh, Michael Wand, and Hans-Peter Seidel. 2010. A connection between partial symmetry and inverse procedural modeling. ACM Transactions on Graphics 29, 4, 104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Carles Bosch, Pierre-Yves Laffont, Holly Rushmeier, Julie Dorsey, and George Drettakis. 2011. Image-guided weathering: A new approach applied to flow phenomena. ACM Transactions on Graphics 30, 3, Article No. 20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Antoine Bouthors, Fabrice Neyret, Nelson Max, Eric Bruneton, and Cyril Crassin. 2008. Interactive multiple anisotropic scattering in clouds. In Proceedings of the 2008 Symposium on Interactive 3D Graphics and Games. ACM, New York, NY, 173--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Massimiliano Caramia and Paolo Dell’Olmo. 2008. Multi-Objective Management in Freight Logistics: Increasing Capacity, Service Level and Safety with Optimization Algorithms. Springer Science 8 Business Media.Google ScholarGoogle Scholar
  13. Fei Chen and Jimy Dudhia. 2001. Coupling an advanced land surface-hydrology model with the penn state-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly Weather Review 129, 4, 569--585.Google ScholarGoogle ScholarCross RefCross Ref
  14. F. Chen, H. Kusaka, R. Bornstein, J. Ching, C. S. B. Grimmond, S. Grossman-Clarke, T. Loridan, et al. 2011. The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. International Journal of Climatology 31, 2, 273--288.Google ScholarGoogle ScholarCross RefCross Ref
  15. Yanyun Chen, Lin Xia, Tien-Tsin Wong, Xin Tong, Hujun Bao, Baining Guo, and Heung-Yeung Shum. 2005. Visual simulation of weathering by γ-ton tracing. ACM Transactions on Graphics 24, 3, 1127--1133. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. CityEngine. 2016. Home Page. Retrieved February 8, 2017, from http://www.esri.comGoogle ScholarGoogle Scholar
  17. William R. Cotton, R. A. Pielke Sr., R. L. Walko, G. E. Liston, C. J. Tremback, H. Jiang, R. L. McAnelly, et al. 2003. RAMS 2001: Current status and future directions. Meteorology and Atmospheric Physics 82, 1--4, 5--29.Google ScholarGoogle ScholarCross RefCross Ref
  18. Yoshinori Dobashi, Kazufumi Kaneda, Hideo Yamashita, Tsuyoshi Okita, and Tomoyuki Nishita. 2000. A simple, efficient method for realistic animation of clouds. In Computer Graphics and Interactive Techniques. ACM, New York, NY, 19--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Yoshinori Dobashi, Katsutoshi Kusumoto, Tomoyuki Nishita, and Tsuyoshi Yamamoto. 2008. Feedback control of cumuliform cloud formation based on computational fluid dynamics. ACM Transactions on Graphics 27, 3, 94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Daniel Dunbar and Greg Humphreys. 2006. A spatial data structure for fast Poisson-disk sample generation. ACM Transactions on Graphics 25, 3, 503--508. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Dale R. Durran. 1989. Improving the anelastic approximation. Journal of the Atmospheric Sciences 46, 11, 1453--1461.Google ScholarGoogle ScholarCross RefCross Ref
  22. Dale R. Durran. 2013. Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Vol. 32. Springer Science 8 Business Media.Google ScholarGoogle Scholar
  23. David S. Ebert. 2003. Texturing and Modeling: A Procedural Approach. Morgan Kaufmann. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. 2001. Visual simulation of smoke. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. ACM, New York, NY, 15--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. I. Garcia-Dorado, D. G. Aliaga, and S. V. Ukkusuri. 2014. Designing large-scale interactive traffic animations for urban modeling. Computer Graphics Forum 33, 2, 411--420. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Kshitiz Garg and Shree K. Nayar. 2006. Photorealistic rendering of rain streaks. ACM Transactions on Graphics 25, 3, 996--1002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. A. F. Gero, A. J. Pitman, G. T. Narisma, C. Jacobson, and R. A. Pielke. 2006. The impact of land cover change on storms in the Sydney Basin, Australia. Global and Planetary Change 54, 1, 57--78.Google ScholarGoogle ScholarCross RefCross Ref
  28. Yoshiharu Gotanda, Masaki Kawase, and Masanori Kakimoto. 2015. Real-time rendering of physically based optical effects in theory and practice. In Proceedings of ACM SIGGRAPH 2015 Courses (SIGGRAPH’15). ACM, New York, NY, 23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Mark J. Harris, William V. Baxter, Thorsten Scheuermann, and Anselmo Lastra. 2003. Simulation of cloud dynamics on graphics hardware. In Proceedings of the Conference on Graphics Hardware. 92--101. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Mark J. Harris and Anselmo Lastra. 2001. Real-time cloud rendering. Computer Graphics Forum 20, 3, 76--85.Google ScholarGoogle ScholarCross RefCross Ref
  31. W. Keith Hastings. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 1, 97--109.Google ScholarGoogle ScholarCross RefCross Ref
  32. James R. Holton and Gregory J. Hakim. 2012. An Introduction to Dynamic Meteorology. Vol. 88. Academic Press.Google ScholarGoogle Scholar
  33. Claire A. Jantz, Scott J. Goetz, David Donato, and Peter Claggett. 2010. Designing and implementing a regional urban modeling system using the SLEUTH cellular urban model. Computers, Environment and Urban Systems 34, 1, 1--16.Google ScholarGoogle ScholarCross RefCross Ref
  34. James T. Kajiya and Brian P. Von Herzen. 1984. Ray tracing volume densities. ACM SIGGRAPH Computer Graphics 18, 3, 165--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Edwin Kessler. 1969. On the Distribution and Continuity of Water Substance in Atmospheric Circulation. American Meteorological Society.Google ScholarGoogle Scholar
  36. Joe Kniss, Simon Premoze, Charles Hansen, Peter Shirley, and Allen McPherson. 2003. A model for volume lighting and modeling. IEEE Transactions on Visualization and Computer Graphics 9, 2, 150--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Edward N. Lorenz. 1969. Atmospheric predictability as revealed by naturally occurring analogues. Journal of the Atmospheric Sciences 26, 4, 636--646.Google ScholarGoogle ScholarCross RefCross Ref
  38. Terry Lucke and Peter W. B. Nichols. 2015. The pollution removal and stormwater reduction performance of street-side bioretention basins after ten years in operation. Science of the Total Environment, 784--92.Google ScholarGoogle Scholar
  39. Miles Macklin and Matthias Müller. 2013. Position based fluids. ACM Transactions on Graphics 32, 4, 104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Dinesh Manocha and Ming C. Lin. 2012. Interactive large-scale crowd simulation. In Digital Urban Modeling and Simulation. Springer, 221--235.Google ScholarGoogle Scholar
  41. J. S. Marshall and W. M. Palmer. 1948. The distribution of raindrops with size. Journal of Meteorology 5, 4, 165--166.Google ScholarGoogle ScholarCross RefCross Ref
  42. Fedor Mesinger, Geoff DiMego, Eugenia Kalnay, Kenneth Mitchell, Perry C. Shafran, Wesley Ebisuzaki, Dušan Jovic, et al. 2006. North American regional reanalysis. Bulletin of the American Meteorological Society 87, 3, 343--360.Google ScholarGoogle ScholarCross RefCross Ref
  43. Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller. 1953. Equation of state calculations by fast computing machines. Journal of Chemical Physics 21, 6, 1087--1092.Google ScholarGoogle ScholarCross RefCross Ref
  44. John Michalakes and Manish Vachharajani. 2008. GPU acceleration of numerical weather prediction. Parallel Processing Letters 18, 04, 531--548.Google ScholarGoogle ScholarCross RefCross Ref
  45. Jarno Mielikainen, Bormin Huang, Jun Wang, H.-L. Allen Huang, and Mitchell D. Goldberg. 2013. Compute unified device architecture (CUDA)-based parallelization of WRF Kessler cloud microphysics scheme. Computers and Geosciences 52, 292--299. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Ryo Miyazaki, Satoru Yoshida, Yoshinori Dobashi, and Tomoyula Nishita. 2001. A method for modeling clouds based on atmospheric fluid dynamics. In Computer Graphics and Applications. IEEE, Los Alamitos, CA, 363--372. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. A. S. Monin and A. Obukhov. 1954. Basic laws of turbulent mixing in the surface layer of the atmosphere. Contributions of the Geophysical Institute of the Slovak Academy of Sciences 24, 151, 163--187.Google ScholarGoogle Scholar
  48. Jennifer Mullaney, Terry Lucke, and Stephen J. Trueman. 2015. A review of benefits and challenges in growing street trees in paved urban environments. Landscape and Urban Planning 134, 157--166.Google ScholarGoogle ScholarCross RefCross Ref
  49. Przemyslaw Musialski, Peter Wonka, Daniel G. Aliaga, Michael Wimmer, L Gool, and Werner Purgathofer. 2013. A survey of urban reconstruction. Computer Graphics Forum 32, 6, 146--177. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Frederik Nebeker. 1995. Calculating the Weather: Meteorology in the 20th Century. Vol. 60. Academic Press.Google ScholarGoogle Scholar
  51. Tomoyuki Nishita, Yoshinori Dobashi, and Eihachiro Nakamae. 1996. Display of clouds taking into account multiple anisotropic scattering and sky light. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. ACM, New York, NY, 379--386. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Tomoyuki Nishita, Hiroshi Iwasaki, Yoshinori Dobashi, and Eihachiro Nakamae. 1997. A modeling and rendering method for snow by using metaballs. Computer Graphics Forum 16, 3, C357--C364.Google ScholarGoogle ScholarCross RefCross Ref
  53. Dev Niyogi, Patrick Pyle, Ming Lei, S. Pal Arya, Chandra M. Kishtawal, Marshall Shepherd, Fei Chen, and Brian Wolfe. 2011. Urban modification of thunderstorms: An observational storm climatology and model case study for the Indianapolis urban region. Journal of Applied Meteorology and Climatology 50, 5, 1129--1144.Google ScholarGoogle ScholarCross RefCross Ref
  54. J. Noilhan and S. Planton. 1989. A simple parameterization of land surface processes for meteorological models. Monthly Weather Review 117, 3, 536--549.Google ScholarGoogle ScholarCross RefCross Ref
  55. Timothy R. Oke. 2002. Boundary Layer Climates. Routledge.Google ScholarGoogle Scholar
  56. Derek Overby, Zeki Melek, and John Keyser. 2002. Interactive physically-based cloud simulation. In Computer Graphics and Applications. IEEE, Los Alamitos, CA, 469--470. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Yoav I. H. Parish and Pascal Müller. 2001. Procedural modeling of cities. In Computer Graphics and Interactive Techniques. ACM, New York, NY, 301--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Roger Pielke, David Stokowski, Jih-Wang Wang, Tomislava Vukicevic, Giovanni Leoncini, Toshihisa Matsui, Christopher L. Castro, et al. 2007. Satellite-based model parameterization of diabatic heating. Eos, Transactions American Geophysical Union 88, 8, 96--97.Google ScholarGoogle ScholarCross RefCross Ref
  59. Roger A. Pielke Sr. 2013. Mesoscale Meteorological Modeling. Vol. 98. Academic Press.Google ScholarGoogle Scholar
  60. R. J. Purser and L. M. Leslie. 1988. A semi-implicit, semi-Lagrangian finite-difference scheme using high-order spatial differencing on a nonstaggered grid. Monthly Weather Review 116, 10, 2069--2080.Google ScholarGoogle ScholarCross RefCross Ref
  61. David A. Randall and George J. Huffman. 1980. A stochastic model of cumulus clumping. Atmospheric Sciences 37, 9, 2068--2078.Google ScholarGoogle ScholarCross RefCross Ref
  62. M. Santamouris. 2014. Cooling the cities—a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar Energy 103, 682--703.Google ScholarGoogle ScholarCross RefCross Ref
  63. Paul E. Schmid and Dev Niyogi. 2013. Impact of city size on precipitation-modifying potential. Geophysical Research Letters 40, 19, 5263--5267.Google ScholarGoogle ScholarCross RefCross Ref
  64. Jason Sewall, David Wilkie, and Ming C. Lin. 2011. Interactive hybrid simulation of large-scale traffic. ACM Transactions on Graphics 30, 6, Article No. 135. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. William C. Skamarock, Joseph B. Klemp, Jimy Dudhia, David O. Gill, Dale M Barker, Wei Wang, and Jordan G. Powers. 2005. A Description of the Advanced Research WRF Version 2. Technical Report. National Center for Atmospheric Research, Boulder, CO.Google ScholarGoogle Scholar
  66. William D. Solecki, Cynthia Rosenzweig, Lily Parshall, Greg Pope, Maria Clark, Jennifer Cox, and Mary Wiencke. 2005. Mitigation of the heat island effect in urban New Jersey. Global Environmental Change Part B: Environmental Hazards 6, 1, 39--49.Google ScholarGoogle Scholar
  67. Su-Tzai Soong and Yoshimitsu Ogura. 1973. A comparison between axisymmetric and slab-symmetric cumulus cloud models. Journal of the Atmospheric Sciences 30, 5, 879--893.Google ScholarGoogle ScholarCross RefCross Ref
  68. John Steinhoff and David Underhill. 1994. Modification of the Euler equations for vorticity confinement: Application to the computation of interacting vortex rings. Physics of Fluids 6, 8, 2738--2744.Google ScholarGoogle ScholarCross RefCross Ref
  69. J. M. Straka, Robert B. Wilhelmson, Louis J. Wicker, John R. Anderson, and Kelvin K. Droegemeier. 1993. Numerical solutions of a non-linear density current: A benchmark solution and comparisons. International Journal for Numerical Methods in Fluids 17, 1, 1--22.Google ScholarGoogle ScholarCross RefCross Ref
  70. Roland B. Stull. 1988. An Introduction to Boundary Layer Meteorology. Vol. 13. Springer Science 8 Business Media.Google ScholarGoogle Scholar
  71. Roland B. Stull. 2000. Meteorology for Scientists and Engineers. Brooks/Cole.Google ScholarGoogle Scholar
  72. Jerry O. Talton, Yu Lou, Steve Lesser, Jared Duke, Radomír Měch, and Vladlen Koltun. 2011. Metropolis procedural modeling. ACM Transactions on Graphics 30, 2, 11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Otto Tetens. 1930. Uber einige meteorologische Begriffe. Zeitschrift fur Geophysik 6, 297--309.Google ScholarGoogle Scholar
  74. U.S. Census Bureau. 2016. Home Page. Retrieved February 8, 2017, from http://www.census.gov.Google ScholarGoogle Scholar
  75. Carlos A. Vanegas, Daniel G. Aliaga, Peter Wonka, Pascal Müller, Paul Waddell, and Benjamin Watson. 2010. Modelling the appearance and behaviour of urban spaces. Computer Graphics Forum 29, 1, 25--42.Google ScholarGoogle ScholarCross RefCross Ref
  76. Carlos A. Vanegas, Ignacio Garcia-Dorado, Daniel G. Aliaga, Bedrich Benes, and Paul Waddell. 2012. Inverse design of urban procedural models. ACM Transactions on Graphics 31, 6, 168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. White Roof Project. n.d. The White Roof Project. Retrieved February 8, 2017, from http://www.whiteroofproject.orgGoogle ScholarGoogle Scholar
  78. Louis J. Wicker and William C. Skamarock. 2002. Time-splitting methods for elastic models using forward time schemes. Monthly Weather Review 130, 8, 2088--2097.Google ScholarGoogle ScholarCross RefCross Ref
  79. Peter Wonka, Michael Wimmer, François Sillion, and William Ribarsky. 2003. Instant Architecture. Vol. 22. ACM, New York, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Magnus Wrenninge and Nafees Bin Zafar. 2011. Production volume rendering. In Proceedings of ACM SIGGRAPH 2011 Courses. ACM, New York, NY, 71.Google ScholarGoogle Scholar
  81. Chunqiang Yuan, Xiaohui Liang, Shiyu Hao, Yue Qi, and Qinping Zhao. 2014. Modelling cumulus cloud shape from a single image. Computer Graphics Forum 33, 6, 288--297. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Chao Lin Zhang, Fei Chen, Shi Guang Miao, Qing Chun Li, Xiang Ao Xia, and Chun Yi Xuan. 2009. Impacts of urban expansion and future green planting on summer precipitation in the Beijing metropolitan area. Journal of Geophysical Research: Atmospheres--2012) 114, D2.Google ScholarGoogle Scholar

Index Terms

  1. Fast Weather Simulation for Inverse Procedural Design of 3D Urban Models

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 36, Issue 2
        April 2017
        168 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3068851
        Issue’s Table of Contents

        Copyright © 2017 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 7 April 2017
        • Revised: 1 December 2016
        • Accepted: 1 December 2016
        • Received: 1 November 2015
        Published in tog Volume 36, Issue 2

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader