skip to main content
research-article

The Locality of Distributed Symmetry Breaking

Published:28 June 2016Publication History
Skip Abstract Section

Abstract

Symmetry-breaking problems are among the most well studied in the field of distributed computing and yet the most fundamental questions about their complexity remain open. In this article we work in the LOCAL model (where the input graph and underlying distributed network are identical) and study the randomized complexity of four fundamental symmetry-breaking problems on graphs: computing MISs (maximal independent sets), maximal matchings, vertex colorings, and ruling sets. A small sample of our results includes the following:

—An MIS algorithm running in O(log2Δ + 2o(√log log n)) time, where Δ is the maximum degree. This is the first MIS algorithm to improve on the 1986 algorithms of Luby and Alon, Babai, and Itai, when log n ≪ Δ ≪ 2√log n, and comes close to the Ω(log Δ / log log Δ lower bound of Kuhn, Moscibroda, and Wattenhofer.

—A maximal matching algorithm running in O(log Δ + log 4log n) time. This is the first significant improvement to the 1986 algorithm of Israeli and Itai. Moreover, its dependence on Δ is nearly optimal.

—A (Δ + 1)-coloring algorithm requiring O(log Δ + 2o(√log log n) time, improving on an O(log Δ + √log n)-time algorithm of Schneider and Wattenhofer.

—A method for reducing symmetry-breaking problems in low arboricity/degeneracy graphs to low-degree graphs. (Roughly speaking, the arboricity or degeneracy of a graph bounds the density of any subgraph.) Corollaries of this reduction include an O(√log n)-time maximal matching algorithm for graphs with arboricity up to 2√log n and an O(log 2/3n)-time MIS algorithm for graphs with arboricity up to 2(log n)1/3.

Each of our algorithms is based on a simple but powerful technique for reducing a randomized symmetry-breaking task to a corresponding deterministic one on a poly(log n)-size graph.

References

  1. N. Alon. 1991. A parallel algorithmic version of the local lemma. Rand. Struct. Algor. 2, 4 (1991), 367--378. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. N. Alon, L. Babai, and A. Itai. 1986. A fast and simple randomized parallel algorithm for the maximal independent set problem. J. Algor. 7 (1986), 567--583. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. A. Amir, O. Kapah, T. Kopelowitz, M. Naor, and E. Porat. 2014. The family holiday gathering problem or fair and periodic scheduling of independent sets. CoRR abs/1408.2279 (2014).Google ScholarGoogle Scholar
  4. B. Awerbuch, A. V. Goldberg, M. Luby, and S. A. Plotkin. 1989. Network decomposition and locality in distributed computation. In Proceedings 30th IEEE Symposium on Foundations of Computer Science (FOCS). 364--369. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. R. Bar-Yehuda, K. Censor-Hillel, and G. Schwartzman. 2016. A distributed (2 + ε)-approximation for vertex cover in O(log Δ/εlog log Δ) rounds. CoRR abs/1602.03713 (2016).Google ScholarGoogle Scholar
  6. L. Barenboim. 2015. Deterministic (Δ + 1)-coloring in sublinear (in Δ) time in static, dynamic and faulty networks. In Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing (PODC). 345--354. DOI:http://dx.doi.org/10.1145/2767386.2767410 Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. L. Barenboim and M. Elkin. 2010. Sublogarithmic distributed MIS algorithm for sparse graphs using Nash-Williams decomposition. Distrib. Comput. 22, 5--6 (2010), 363--379.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. L. Barenboim and M. Elkin. 2011. Deterministic distributed vertex coloring in polylogarithmic time. J. ACM 58, 5 (2011), 23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. L. Barenboim and M. Elkin. 2013. Distributed Graph Coloring: Fundamentals and Recent Developments. Morgan & Claypool Publishers, San Francisco, CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. L. Barenboim, M. Elkin, and F. Kuhn. 2014. Distributed (Δ + 1)-coloring in linear (in Δ) time. SIAM J. Comput. 43, 1 (2014), 72--95.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J. Beck. 1991. An algorithmic approach to the Lovász local lemma. I. Rand. Struct. Algor. 2, 4 (1991), 343--366. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. T. Bisht, K. Kothapalli, and S. V. Pemmaraju. 2014. Brief announcement: Super-fast t-ruling sets. In Proceedings 33rd ACM Symposium on Principles of Distributed Computing (PODC). 379--381. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. K.-M. Chung, S. Pettie, and H.-H. Su. 2014. Distributed algorithms for the Lovász local lemma and graph coloring. In Proceedings 33rd ACM Symposium on Principles of Distributed Computing (PODC). 134--143. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. R. Cole and U. Vishkin. 1986. Deterministic coin tossing with applications to optimal parallel list ranking. Inform. Control 70, 1 (1986), 32--53. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. D. P. Dubhashi and A. Panconesi. 2009. Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press, Cambridge. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. D. P. Dubhashi and D. Ranjan. 1998. Balls and bins: A study in negative dependence. J. Rand. Struct. Algs. 13, 2 (1998), 99--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. M. Elkin, S. Pettie, and H. H. Su. 2015. (2Δ − 1)-edge coloring is much easier than maximal matching in the distributed setting. In Proceedings 26th ACM-SIAM Symposium on Discrete Algorithms (SODA). 355--370. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. B. Gfeller and E. Vicari. 2007. A randomized distributed algorithm for the maximal independent set problem in growth-bounded graphs. In Proceedings 26th Annual ACM Symposium on Principles of Distributed Computing (PODC). 53--60. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. Ghaffari. 2016. An improved distributed algorithm for maximal independent set. In Proceedings 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 270--277. DOI:http://dx.doi.org/10.1137/1.9781611974331.ch20 Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. M. Hańćkowiak, M. Karoński, and A. Panconesi. 2001. On the distributed complexity of computing maximal matchings. SIAM J. Discr. Math. 15, 1 (2001), 41--57 (electronic). Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. D. Harris, J. Schneider, and H.-H. Su. 2016. Distributed (Δ + 1)-coloring in sublogarithmic rounds. In Proceedings 48th ACM Symposium on Theory of Computing (STOC). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. A. Israeli and A. Itai. 1986. A fast and simple randomized parallel algorithm for maximal matching. Info. Proc. Lett. 22, 2 (1986), 77--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Ö. Johansson. 1999. Simple distributed Δ + 1-coloring of graphs. Info. Proc. Lett. 70, 5 (1999), 229--232. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. A. Korman, J.-S. Sereni, and L. Viennot. 2013. Toward more localized local algorithms: Removing assumptions concerning global knowledge. Distrib. Comput. 26, 5--6 (2013), 289--308.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. K. Kothapalli and S. V. Pemmaraju. 2011. Distributed graph coloring in a few rounds. In Proceedings 30th Annual ACM Symposium on Principles of Distributed Computing (PODC). 31--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. K. Kothapalli and S. V. Pemmaraju. 2012. Super-fast 3-ruling sets. In Proceedings IARCS Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS). LIPIcs, Vol. 18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 136--147.Google ScholarGoogle Scholar
  27. K. Kothapalli, C. Scheideler, M. Onus, and C. Schindelhauer. 2006. Distributed coloring in O˜(√log n) bit rounds. In Proceedings 20th International Parallel and Distributed Processing Symposium (IPDPS). Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. F. Kuhn, T. Moscibroda, and R. Wattenhofer. 2004. What cannot be computed locally! In Proceedings 23rd Annual ACM Symposium on Principles of Distributed Computing (PODC). 300--309. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. F. Kuhn, T. Moscibroda, and R. Wattenhofer. 2010. Local computation: Lower and upper bounds. CoRR abs/1011.5470 (2010).Google ScholarGoogle Scholar
  30. F. Kuhn and R. Wattenhofer. 2006. On the complexity of distributed graph coloring. In Proceedings 25th Annual ACM Symposium on Principles of Distributed Computing (PODC). 7--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. C. Lenzen and R. Wattenhofer. 2011. MIS on trees. In Proceedings 30th Annual ACM Symposium on Principles of Distributed Computing (PODC). 41--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. N. Linial. 1992. Locality in distributed graph algorithms. SIAM J. Comput. 21, 1 (1992), 193--201. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. N. Linial and M. E. Saks. 1993. Low diameter graph decompositions. Combinatorica 13, 4 (1993), 441--454.Google ScholarGoogle ScholarCross RefCross Ref
  34. M. Luby. 1986. A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput. 15, 4 (1986), 1036--1053. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. R. A. Moser and G. Tardos. 2010. A constructive proof of the general Lovász local lemma. J. ACM 57, 2 (2010). DOI:http://dx.doi.org/10.1145/1667053.1667060 Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. C. St. J. A. Nash-Williams. 1964. Decomposition of finite graphs into forests. J. London Math. Soc. 39 (1964), 12.Google ScholarGoogle Scholar
  37. A. Panconesi and R. Rizzi. 2001. Some simple distributed algorithms for sparse networks. Distrib. Comput. 14, 2 (2001), 97--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. A. Panconesi and A. Srinivasan. 1996. On the complexity of distributed network decomposition. J. Algor. 20, 2 (1996), 356--374. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. D. Peleg. 2000. Distributed Computing: A Locality-Sensitive Approach. SIAM, Philadelphia, PA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. S. Pettie and H.-H. Su. 2015. Distributed algorithms for coloring triangle-free graphs. Inform. Comput. 243 (2015), 263--280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. R. Rubinfeld, G. Tamir, S. Vardi, and N. Xie. 2011. Fast local computation algorithms. In Proceedings of the 1st Symposium on Innovations in Computer Science (ICS). 223--238. See also CoRR abs/1104.1377.Google ScholarGoogle Scholar
  42. J. Schneider, M. Elkin, and R. Wattenhofer. 2013. Symmetry breaking depending on the chromatic number or the neighborhood growth. Theor. Comput. Sci. 509 (2013), 40--50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. J. Schneider and R. Wattenhofer. 2010a. A new technique for distributed symmetry breaking. In Proceedings 29th Annual ACM Symposium on Principles of Distributed Computing (PODC). 257--266. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. J. Schneider and R. Wattenhofer. 2010b. An optimal maximal independent set algorithm for bounded-independence graphs. Distrib. Comput. 22, 5--6 (2010), 349--361.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. H.-H. Su. 2015. Algorithms for Fundamental Problems in Computer Networks. Ph.D. Dissertation. University of Michigan.Google ScholarGoogle Scholar
  46. M. Szegedy and S. Vishwanathan. 1993. Locality based graph coloring. In Proceedings 25th ACM Symposium on Theory of Computing (STOC). 201--207. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. The Locality of Distributed Symmetry Breaking

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image Journal of the ACM
        Journal of the ACM  Volume 63, Issue 3
        September 2016
        303 pages
        ISSN:0004-5411
        EISSN:1557-735X
        DOI:10.1145/2957788
        Issue’s Table of Contents

        Copyright © 2016 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 28 June 2016
        • Accepted: 1 March 2016
        • Revised: 1 February 2016
        • Received: 1 February 2015
        Published in jacm Volume 63, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader