skip to main content
10.1145/2677199.2680596acmconferencesArticle/Chapter ViewAbstractPublication PagesteiConference Proceedingsconference-collections
research-article

DisplaySkin: Exploring Pose-Aware Displays on a Flexible Electrophoretic Wristband

Published:15 January 2015Publication History

ABSTRACT

Mobile devices can provide people with contextual information. This information may benefit a primary activity, assuming it is easily accessible. In this paper, we present DisplaySkin, a pose-aware device with a flexible display circling the wrist. DisplaySkin creates a kinematic model of a user's arm and uses it to place information in view, independent of body pose. In doing so, DisplaySkin aims to minimize the cost of accessing information without being intrusive. We evaluated our pose-aware display with a rotational pointing task, which was interrupted by a notification on DisplaySkin. Results show that a pose-aware display reduces the time required to respond to notifications on the wrist.

Skip Supplemental Material Section

Supplemental Material

tei0286.mp4

mp4

19.8 MB

p165.mp4

mp4

427.6 MB

References

  1. Boettcher, D. The Development of the Wristwatch. 2006. http://www.vintagewatchstraps.com/wristwatches.html.Google ScholarGoogle Scholar
  2. Brendel, W. and Todorovic, S. Activities as time series of human postures. Proc. ECCV, Springer-Verlag (2010), 721--734. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Butler, A., Izadi, S., and Hodges, S. SideSight: multitouch interaction around small devices. Proc. UIST, ACM (2008), 201--204. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Chen, X.A., Grossman, T., Wigdor, D., and Fitzmaurice, G. Duet: Exploring Joint Interactions on a Smart Phone and a Smart Watch. Proc. CHI, ACM (2014), 159--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Chen, X.A., Marquardt, N., Tang, A., Boring, S., and Greenberg, S. Extending a mobile device's interaction space through body-centric interaction. Proc. MobileHCI, ACM Press (2012), 151--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Cheng, L., Hsiao, F., Liu, Y., and Chen, M. iRotate: automatic screen rotation based on face orientation. Proc. CHI, (2012), 2203--2210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Gioberto, G., Coughlin, J., Bibeau, K., and Dunne, L.E. Detecting bends and fabric folds using stitched sensors. Proc. ISWC, ACM Press (2013), 53--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Google Glass. Google Glass. http://www.google.com/glass.Google ScholarGoogle Scholar
  9. Google. Android Wear. http://www.android.com/wear/.Google ScholarGoogle Scholar
  10. Harrison, C., Benko, H., and Wilson, A.D. OmniTouch: Wearable Multitouch Interaction Everywhere. Proc. UIST, ACM Press (2011), 441--450. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Harrison, C. and Hudson, S. Abracadabra: wireless, high-precision, and unpowered finger input for very small mobile devices. Proc. UIST, (2009), 121--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Harrison, C., Ramamurthy, S., and Hudson, S. On-body interaction: armed and dangerous. Proc. TEI, (2012), 69--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Harrison, C., Tan, D., and Morris, D. Skinput: Appropriating the Body as an Input Surface. Proc. CHI, (2010), 453--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Holman, D., Burstyn, J., Brotman, R., Younkin, A., and Vertegaal, R. Flexkit: A Rapid Prototyping Platform for Flexible Displays. Proc. UIST, ACM Press (2013), 17--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Jaquet, E. and Chapuis, A. Technique and history of the Swiss watch from its beginnings to the present day. Graf Verlag, 1953.Google ScholarGoogle Scholar
  16. Kim, S. Disabling an automatic rotation function of mobile computing devices. 2013.Google ScholarGoogle Scholar
  17. Lyons, K., Nguyen, D., Ashbrook, D., and White, S. Facet: a multi-segment wrist worn system. Proc. UIST, (2012), 123--129. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Mahony, R., Hamel, T., and Pflimlin, J. Nonlinear complementary filters on the special orthogonal group. Automatic Control 53, 5 (2008), 1203--1218.Google ScholarGoogle ScholarCross RefCross Ref
  19. Makino, Y., Sugiura, Y., Ogata, M., and Inami, M. Tangential force sensing system on forearm. Proc. Augmented Human, ACM Press (2013), 29--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Marshall, J. and Tennent, P. Mobile interaction does not exist. Proc. CHI EA, ACM Press (2013), 2069--2078. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Microsoft. Kinect. http://www.xbox.com/en-US/Kinect.Google ScholarGoogle Scholar
  22. Nakatsuma, K., Shinoda, H., Makino, Y., Sato, K., and Maeno, T. Touch interface on back of the hand. Proc. SIGGRAPH, ACM Press (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Olberding, S., Yeo, K., Nanayakkara, S., and Steimle, J. AugmentedForearm: Exploring the Design Space of a Dis-play-enhanced Forearm. Proc. Augmented Human, (2013), 9--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Pebble SmartWatch. Pebble SmartWatch. http://www.getpebble.com.Google ScholarGoogle Scholar
  25. Perrault, S.T., Lecolinet, E., Eagan, J., and Guiard, Y. WatchIt: Simple Gestures and Eyes-free Interaction for Wristwatches and Bracelets. Proc. CHI, (2013), 1451--1460. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Plastic Logic. It's a wrap! https://www.youtube.com/watch?v=5kqFlx7rSs4.Google ScholarGoogle Scholar
  27. Plastic Logic. Plastic Logic. http://www.plasticlogic.com/.Google ScholarGoogle Scholar
  28. Rector, K., Bennett, C., and Kientz, J. Eyes-free yoga: an exergame using depth cameras for blind & low vision exercise. Proc. ASSETS, (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Rekimoto, J. Gesturewrist and gesturepad: Unobtrusive wearable interaction devices. Proc. ISWC, (2001), 21--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Samsung. Galaxy Gear. http://www.samsung.com/global/microsite/galaxynote3+gear/.Google ScholarGoogle Scholar
  31. Sciavicco, L. and Siciliano, B. Modelling and Control of Robot Manipulators. CreateSpace, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Stop The Cyborgs. Stop The Cyborgs. http://stopthecyborgs.org/.Google ScholarGoogle Scholar
  33. Strohmeier, P., Vertegaal, R., and Girouard, A. With a Flick of the Wrist: Stretch Sensors as Lightweight Input for Mobile Devices. Proc. TEI, (2012), 307--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Tarun, A., Lahey, B., Girouard, A., Burleson, W., and Vertegaal, R. Snaplet: using body shape to inform function in mobile flexible display devices. Proc. CHI EA, ACM Press (2011), 329--334. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Teicher, M. Orientation-sensitive display system. 1993.Google ScholarGoogle Scholar
  36. Thalmic Labs. MYO. https://www.thalmic.com/en/myo/.Google ScholarGoogle Scholar
  37. Vicon. Vicon. http://www.vicon.com.Google ScholarGoogle Scholar
  38. Watch Museum of Le Locle. Times of the watch. http://www.mhl-monts.ch/en/temps_montre.php.Google ScholarGoogle Scholar
  39. Wesolowski, W. The Concise Guide to Military Timepieces 1880--1990. The Crowood Press Ltd, 1996.Google ScholarGoogle Scholar
  40. Wigdor, D. and Balakrishnan, R. Empirical investigation into the effect of orientation on text readability in tabletop displays. Proc. ECSCW, Springer-Verlag (2005), 205--224. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Wilfinger, D. and Murer, M. The wheels are turning: Content rotation on steering wheel displays. Proc. CHI, (2013), 1809--1812. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Xsense. Xsense. http://www.xsens.com/.Google ScholarGoogle Scholar
  43. Zhang, Y., Han, T., Ren, Z., and Umetani, N. BodyAvatar: creating freeform 3D avatars using firstperson body gestures. Proc. UIST, (2013), 387--396. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. DisplaySkin: Exploring Pose-Aware Displays on a Flexible Electrophoretic Wristband

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      TEI '15: Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction
      January 2015
      766 pages
      ISBN:9781450333054
      DOI:10.1145/2677199

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 15 January 2015

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      TEI '15 Paper Acceptance Rate63of222submissions,28%Overall Acceptance Rate393of1,367submissions,29%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader