skip to main content
10.1145/2380116.2380181acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article

Jamming user interfaces: programmable particle stiffness and sensing for malleable and shape-changing devices

Authors Info & Claims
Published:07 October 2012Publication History

ABSTRACT

Malleable and organic user interfaces have the potential to enable radically new forms of interactions and expressiveness through flexible, free-form and computationally controlled shapes and displays. This work, specifically focuses on particle jamming as a simple, effective method for flexible, shape-changing user interfaces where programmatic control of material stiffness enables haptic feedback, deformation, tunable affordances and control gain. We introduce a compact, low-power pneumatic jamming system suitable for mobile devices, and a new hydraulic-based technique with fast, silent actuation and optical shape sensing. We enable jamming structures to sense input and function as interaction devices through two contributed methods for high-resolution shape sensing using: 1) index-matched particles and fluids, and 2) capacitive and electric field sensing. We explore the design space of malleable and organic user interfaces enabled by jamming through four motivational prototypes that highlight jamming's potential in HCI, including applications for tabletops, tablets and for portable shape-changing mobile devices.

Skip Supplemental Material Section

Supplemental Material

paper_0282-file3.m4v

m4v

76.5 MB

References

  1. Amend, J., Brown, E., Rodenberg, N., Jaeger, H., and Lipson, H. A Positive Pressure Universal Gripper Based on the Jamming of Granular Material. IEEE Transactions on Robotics (2012), 341--350.Google ScholarGoogle Scholar
  2. Benko, H. Beyond flat surface computing: challenges of depth-aware and curved interfaces. In ACM MM '09, ACM Press (New York, New York, USA, Oct. 2009), 935--944. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Brown, E., Rodenberg, N., Amend, J., Mozeika, A., Steltz, E., Zakin, M. R., Lipson, H., and Jaeger, H. M. Universal robotic gripper based on the jamming of granular material. Proceedings of the National Academy of Sciences 107, 44 (Oct. 2010), 18809--18814.Google ScholarGoogle ScholarCross RefCross Ref
  4. Cassinelli, A., and Ishikawa, M. Khronos projector. In ACM SIG-GRAPH 2005 Emerging Technologies, SIGGRAPH '05, ACM Press (New York, New York, USA, 2005). Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Cates, M., Wittmer, J., Bouchaud, J. P., and Claudin, P. Jamming, Force Chains, and Fragile Matter. Physical Review Letters 81, 9 (Aug. 1998), 1841--1844.Google ScholarGoogle ScholarCross RefCross Ref
  6. Cheng, N., Lobovsky, M., Keating, S., Setapen, A., Gero, K. I., Hosoi, A., and Iagnemma, K. Design and Analysis of a Robust, Low-Cost, Highly Articulated Manipulator Enabled by Jamming of Granular Media. IEEE ICRA (2012), 4328--4333.Google ScholarGoogle Scholar
  7. Coelho, M., and Zigelbaum, J. Shape-changing interfaces. Personal and Ubiquitous Computing 15, 2 (July 2010), 161--173. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Follmer, S., Johnson, M., Adelson, E., and Ishii, H. deForm: an interactive malleable surface for capturing 2.5D arbitrary objects, tools and touch. In UIST '11, ACM Press (Oct. 2011), 527--536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Gupta, S., Campbell, T., Hightower, J. R., and Patel, S. N. SqueezeBlock: using virtual springs in mobile devices for eyes-free interaction. In UIST '10, ACM Press (Oct. 2010), 101--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Harrison, C., and Hudson, S. E. Providing dynamically changeable physical buttons on a visual display. In CHI '09, ACM Press (Apr. 2009), 299--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hemmert, F., Hamann, S., Löwe, M., Wohlauf, A., and Joost, G. Shape-changing mobiles: tapering in one-dimensional deformational displays in mobile phones. In TEI '10, ACM Press (Jan. 2010), 249-- 252. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Herkenrath, G., Karrer, T., and Borchers, J. Twend: twisting and bending as new interaction gesture in mobile devices. In CHI EA '08, ACM Press (New York, New York, USA, Apr. 2008), 3819--3824. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hilliges, O., Kim, D., and Izadi, S. Creating malleable interactive surfaces using liquid displacement sensing. In Proc. Tabletop 2008, IEEE Press (Oct. 2008), 157--160.Google ScholarGoogle ScholarCross RefCross Ref
  14. Hook, J., Taylor, S., Butler, A., Villar, N., and Izadi, S. A reconfigurable ferromagnetic input device. In Proc. UIST 2009, ACM Press (New York, New York, USA, 2009), 51--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Huber, J. E., Fleck, N. a., and Ashby, M. F. The selection of mechanical actuators based on performance indices. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 453, 1965 (Oct. 1997), 2185--2205.Google ScholarGoogle Scholar
  16. Huijben, F., Herwijnen, F. V. A. N., and Nijsse, R. Vacuumatics 3D-Formwork Systems : Customized free-form solidification. Nano, figure 1 (2009), 1--4.Google ScholarGoogle Scholar
  17. Ishii, H., Ratti, C., Piper, B., Wang, Y., Biderman, A., and Ben-Joseph, E. Bringing Clay and Sand into Digital Design Continuous Tangible user Interfaces. BT Technology Journal 22, 4 (Oct. 2004), 287--299. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Iwata, H., Yano, H., Nakaizumi, F., and Kawamura, R. Project FEELEX: adding haptic surface to graphics. In SIGGRAPH '01, ACM Press (Aug. 2001), 469--476. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Jansen, Y., Karrer, T., and Borchers, J. MudPad: tactile feedback and haptic texture overlay for touch surfaces. In Proc. ITS 2010, ACM Press (2010), 11--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kim, S., Kim, H., Lee, B., Nam, T.-J., and Lee, W. Inflatable mouse: volume-adjustable mouse with air-pressure-sensitive input and haptic feedback. In CHI '08, ACM Press (Apr. 2008), 211--224. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lahey, B., Girouard, A., Burleson, W., and Vertegaal, R. PaperPhone: understanding the use of bend gestures in mobile devices with flexible electronic paper displays. In CHI '11, ACM Press (May 2011), 1303--1312. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Liu, A. Jamming is not just cool any more. Nature 396, November (1998), 21--22.Google ScholarGoogle Scholar
  23. Loeve, A. J., Ven, O. S., Vogel, J. G., Breedveld, P., and Dankelman, J. Vacuum packed particles as flexible endoscope guides with controllable rigidity. Granular Matter 12, 6 (June 2010), 543--554.Google ScholarGoogle ScholarCross RefCross Ref
  24. Marquardt, N., Nacenta, M. A., Young, J. E., Carpendale, S., Greenberg, S., and Sharlin, E. The Haptic Tabletop Puck: tactile feedback for interactive tabletops. In ITS '09, ACM Press (Nov. 2009), 85--92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Matoba, Y., Sato, T., Takahashi, N., and Koike, H. Claytricsurface: an interactive surface with dynamic softness control capability. In SIGGRAPH '12 Emerging Technologies, ACM (2012), 6:1--6:1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Mazzone, A., Spagno, C., and Kunz, A. The HoverMesh: a deformable structure based on vacuum cells: new advances in the research of tangible user interfaces. In ACE '04, ACM Press (Sept. 2004), 187--193. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Mitsuda, T., Kuge, S., Wakabayashi, M., and Kawamura, S. Wearable haptic display by the use of a Particle Mechanical Constraint. Proceedings 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. HAPTICS 2002 (2002), 153--158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Overholt, D. The MATRIX: a novel controller for musical expression. In Proc. NIME 2001, NIME '01, AMC (Singapore, 2001), 1--4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Park, Y.-L., Majidi, C., Kramer, R., Beérard, P., and Wood, R. J. Hyperelastic pressure sensing with a liquid-embedded elastomer. Journal of Micromechanics and Microengineering 20, 12 (Dec. 2010), 125029.Google ScholarGoogle ScholarCross RefCross Ref
  30. Parkes, A., Poupyrev, I., and Ishii, H. Designing kinetic interactions for organic user interfaces. Communications of the ACM 51, 6 (June 2008), 58--65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Rekimoto, J. SmartSkin: an infrastructure for freehand manipulation on interactive surfaces. In Proc. CHI 2002, CHI '02, ACM Press (New York, New York, USA, 2002), 113--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Schwesig, C., Poupyrev, I., and Mori, E. Gummi: a bendable computer. In Proceedings of the 2004 conference on Human factors in computing systems - CHI '04, ACM Press (New York, New York, USA, Apr. 2004), 263--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Sergio, M., Manaresi, N., and Tartagni, M. A Textile Based Capacitive Pressure Sensor. Sensors, 2002. (2002), 1625--1630.Google ScholarGoogle ScholarCross RefCross Ref
  34. Smith, R. T., Thomas, B. H., and Piekarski, W. Digital foam interaction techniques for 3D modeling. In Virtual Reality Software and Technology (2008), 61--68. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Steltz, E., Mozeika, A., and Rembisz, J. Jamming as an enabling technology for soft robotics. Electroactive Polymer Actuators and Devices (EAPAD), 764225.Google ScholarGoogle Scholar
  36. Steltz, E., Mozeika, A., Rodenberg, N., Brown, E., and Jaeger, H. JSEL: Jamming Skin Enabled Locomotion. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (Oct. 2009), 5672--5677. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Taylor, B. T., and Bove, V. M. Graspables: grasp-recognition as a user interface. In Proceedings of the 27th international conference on Human factors in computing systems - CHI '09, ACM Press (New York, New York, USA, Apr. 2009), 917--926. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Torquato, S., Truskett, T., and Debenedetti, P. Is random close packing of spheres well defined? Physical review letters 84, 10 (Mar. 2000), 2064--7.Google ScholarGoogle Scholar
  39. Vertegaal, R., and Poupyrev, I. Organic User Interfaces. Communications of the ACM 51, 6 (June 2008), 26--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Vlack, K., Mizota, T., Kawakami, N., Kamiyama, K., Kajimoto, H., and Tachi, S. Gelforce: a vision-based traction field computer interface. In Ext. Abstracts CHI 2005, ACM Press (2005), 1154--1155. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. White, Tom. Introducing Liquid Haptics in High Bandwidth Human Computer Interfaces. PhD thesis, MIT, 1998.Google ScholarGoogle Scholar

Index Terms

  1. Jamming user interfaces: programmable particle stiffness and sensing for malleable and shape-changing devices

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      UIST '12: Proceedings of the 25th annual ACM symposium on User interface software and technology
      October 2012
      608 pages
      ISBN:9781450315807
      DOI:10.1145/2380116

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 7 October 2012

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate842of3,967submissions,21%

      Upcoming Conference

      UIST '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader