skip to main content
article
Free Access

Cubic graphs

Published:01 December 1995Publication History
First page image

References

  1. ALELIUNAS, R., Kaap, R. M., LIPTON, R. J., Lov~sz, L., AND RACKOFF, C. 1979. Random walks, umversal traversal sequences, and the complexity of maze problems. In 20th Annual Svrnposzurn on Foundations of Computer Sctence (San Juan, Puerto Rico, Oct.), IEEE, 218-223Google ScholarGoogle Scholar
  2. ALVAI, Y, CHARTRAND, G, OLLERMANN, O. R., AND SCHW~NK, A. J. Eds. 1991. Graph Theory, Cornblnatorlcs and Applzcat~ons. Wiley, New York.Google ScholarGoogle Scholar
  3. ANDERSON, R.J. 1985 The complexity of parallel algorithms. Stanford Univ, Ph.D. Thesis. Tech. Rep. STAN-CS-86-1092, Stanford Umv., Compurer Science Dept Google ScholarGoogle Scholar
  4. ANDERSON, R. J AND MAX-R, E. W. 1987. Parallelism and the maximal path problem Infi Process. Lett. 24, 2, 121-26. Google ScholarGoogle Scholar
  5. BAR-YEHUDA, R., AND EVEN S. 1985. A local-ratm theorem for approximating the weighted vertex cover problem. Ann. Dzscrete Math. 25, 27-46Google ScholarGoogle Scholar
  6. BERGE, C. 1972. Alternating chain methods A survey In Graph Theory and Computll~g, R. C. Read, Ed. Academic Press, New York.Google ScholarGoogle Scholar
  7. BERGE, C., Ed. 1973. Graphs and Hypergraphs. American Elsevier, New York.Google ScholarGoogle Scholar
  8. BIGGS, N. L., LLOYD, E. K., AND WILSON, R.J. 1976. Graph Theory 17,36-1936. Oxford University Press, London Google ScholarGoogle Scholar
  9. Bosd~K, J 1967. Hamfltoman lines m cubic graphs. In Theory of Graphs Internatzonal Syrnposturrt (International Computahon Cen- ~re, Rome l, Gordon and Breach, New York, 35-46Google ScholarGoogle Scholar
  10. BROOKS, R L. 1941 On colouring the nodes of a network. Proc. Carnbrtdge Phzt Soc 37, 194-197.Google ScholarGoogle Scholar
  11. Buss, J., AND TOMPA, M 1995 Lower bounds on universal sequences based on chains of length five. In Cornput. 120, 2 (Aug.), 326-329. Google ScholarGoogle Scholar
  12. CALAMONERI, T. 1992. Immersione nel piano di grafi cubici uno-retillinei. Univ. Rome, La Sapienza, Oct., Master's Thes~sGoogle ScholarGoogle Scholar
  13. CALAMONERI, T., AND PETRESCHI, R 1995. A parallel algorithm for orthogonal drawings of cubic graphs. Tecb Rep SI/RR 95/03, Univ of Rome, La Sapienza.Google ScholarGoogle Scholar
  14. CANTONI, Z. 1964 On cubic Hamilton graphs Ist Lornbardo sc. lett. rend. c. sc mat nat. 98, 319-326.Google ScholarGoogle Scholar
  15. CULIK, K. 1964. A remark to the construction of cubic graphs containing Hamiltonian lines. Casop. p~stov, mat. 89, 385-389. As cited in Graphs and Hypergraphs, 1973, C. Berge, Ed., American Elsevier, New York.Google ScholarGoogle Scholar
  16. COOK, S. A. 1971. The complexity of theorem proving procedures. In Thrrd Annual ACM Sympostum on Theory of Computing, (Shaker Heights, Ohio), 151-158. Google ScholarGoogle Scholar
  17. COPPERSMITH, D., AND WINOGRAD, S. 1990. Matrix multiplication via arithmetic progressions. J. Syrup. Comput. 9, 3, 251-280. Google ScholarGoogle Scholar
  18. ERDOS, P. AND SACHS, H. 1963. Regutiire Graphen gegebener Taillenweite mit mimmaler Knotenzahl. Tech. Rep. Math.-Nat. Reihe XII/3, Wiss. Z. Univ. Halle.Google ScholarGoogle Scholar
  19. EVEN, S. 1979. Graph Algorithms. Computer Science Press, Rockville, MD. Google ScholarGoogle Scholar
  20. EVEN, S., AND TARJAN, R.E. 1976. Computing an st-numbering. Theor. Comput. Scz. 2, 339-344.Google ScholarGoogle Scholar
  21. FREDERICKSON, G.N. 1985. Data structures for on-line updating of minimum spanning trees, with applications. SIAM J. Comput. 14, 4, 781-798.Google ScholarGoogle Scholar
  22. FRIEZE, A., RADCLIFFE, A. J., AND SUEN S. 1993. Analysis of a simple greedy matching algorithm on random cubic graphs In the Fourth Annual ACM-SIAM Symposium on Dtscrete A1- gomthms (Austin, TX), ACM, New York, 341-351. Google ScholarGoogle Scholar
  23. GAREY, M. R., AND JOHNSON, D.S. 1979. Computers and intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York. Google ScholarGoogle Scholar
  24. GAREY, M. R, AND JOHNSON, D.S. 1977. The rectilinear Sterner tree problem is NP-complete. SIAM J. Appl. Math. 32, 4, 826-834.Google ScholarGoogle Scholar
  25. GAREY, M. R., GRAHAM, R. L., JOHNSON, D. S., AND KNUTH, D. E. 1978. Complexity results for bandwidth communication. SIAM J. Appl. Math. 34, 3, 447-495.Google ScholarGoogle Scholar
  26. GAREY, M. R., JOHNSON, D. S., AND STOCKMEYER, L. 1976a. Some simplified NP-complete graph problems. Theor. Comput. Scl. 1,237-267.Google ScholarGoogle Scholar
  27. GAREY, M. R., JOHNSON, D. S., AND TARJAN, R. E. 1976b. The planar Hamiltonian circuit problem is NP-comptete. SIAM J. Comput. 5, 4, 704-714.Google ScholarGoogle Scholar
  28. GAVRIL, F. 1977. Some NP-complete problems on graphs. In Proceedings of the Eleventh Conference on Informatzon Sctences and Systems (Baltimore, MD), 91-95.Google ScholarGoogle Scholar
  29. GREENLAW, R. 1994. Breadth-depth search is 9- complete. Parallel Process. Lett. 3, 3, 209-222.Google ScholarGoogle Scholar
  30. GREENLAW, R., HOOVER, H. J., AND Ruzzo, W. L. 1995. Limits to Parallel Computation: P-cornpleteness Theory. Oxford University Press, New York. Google ScholarGoogle Scholar
  31. HARARY, F. AND SCHWENK, A.J. 1972. Evolution of the path number of a graph: Covering and packing in graphs, II. In Graph Theory and Computing, R. C. Read, Ed., Academic Press, New York.Google ScholarGoogle Scholar
  32. ISRAELI, A., AND SHILOACH, Y. 1986. An improved algorithm for maximal matching. Inf Process. Lett. 33, 2, 57-60. Google ScholarGoogle Scholar
  33. IZBICKI, H. 1967. On the electronic generation of regular graphs. In Theory of Graphs International Sympostum (International Computation Centre, Rome), Gordon and Breach, New York, 177-182.Google ScholarGoogle Scholar
  34. JOHNSON, D. S. 1981. The NP-completeness column: An ongoing guide. J. Alg. 2, 4, 393-405. Google ScholarGoogle Scholar
  35. JOHNSON, E.L. 1963. A proof of the four-coloring of the edges of a regular three-degree graph. Tech. Rep. O. R. C. 63-28 (R. R.) Min. Report, Univ. of California, Operations Research Center. 1963. As cited in Graphs and Hypergraphs, 1973, C. Berge, Ed., American Elsevier, New York.Google ScholarGoogle Scholar
  36. KARP, R.M. 1972. Reducibility among combinatoriat problems. In Complexity of Computer Computations, R. E. Miller and J. W. Thatcher, Eds., Plenum Press, New York, 85-104.Google ScholarGoogle Scholar
  37. KARP, R. M., AND RAMACHANDRAN, V. 1990. Parallet algorithms for shared-memory machines. In Handbook of Theoretical Computer Sctence, vol. A, J. Leeuwan, Ed., MIT Press/Elsevier, Cambridge, Mass, Ch. 17, 869-941. Google ScholarGoogle Scholar
  38. KARTESZI, E. 1960. Piani finiti ciclici come resoluzioni dl un certo problema di minimo. Boll. Un. Mat. Ital. 15, 3, 522-528.Google ScholarGoogle Scholar
  39. KOBLER, J., SCHONING, U., AND TORfi, N, J. 1993. The Graph Isomorphism Problem: Its Structural Complexity. Birkhiiuser, Boston. Google ScholarGoogle Scholar
  40. KORFHAGE, R. Z. 1984. Discrete Computational Structures. 2nd ed. Academic Press, New York. Google ScholarGoogle Scholar
  41. KOTZIG, A. 1962. The construction of cubic Hamiltonian graphs. Casop. p6stov, mat. 87, 477-488; As cited in Graphs and Hypergraphs, C. Berge, Ed. 1973. American Elsevier, New York.Google ScholarGoogle Scholar
  42. KURATOWSKI, G. 1930. Sur le probt~me des courbes gauches en topologie. Fundamenta Math. 15, 271-283.Google ScholarGoogle Scholar
  43. LADNER, R.E. 1975. The circuit value problem is log space complete for P SIGACT News 7, 1 (Jan.), 18-20. Google ScholarGoogle Scholar
  44. LEIGHTON, F. T. 1992. Introductzon to Parallel Algorzthms and Architectures: Arrays, Trees, Hypercubes. Morgan-Kaufmann, San Mateo, Calif. Google ScholarGoogle Scholar
  45. LEMPEL, A., EVEN, S., AND CEDERBAUM, J. 1966. An algorithm for planarity testing of graphs. In Theory of Graphs, International Sympostum (Rome), 215-232.Google ScholarGoogle Scholar
  46. LIPSKY, W. 1977. Two NP-comptete problems related to information retrieval. In Fundamentals of Computatton Theory, Lecture Notes ~n Computer Sctence, vol. 56, Springer-Verlag, New York, 452-458.Google ScholarGoogle Scholar
  47. LIu, Y, MARCHIORO, P., AND PETRESCHI, R. 1994. At most single-bend embeddings of cubic graphs. Appl. Math. (Chinese journal) 9, 2, 127-142.Google ScholarGoogle Scholar
  48. LIU, Y., MARCHIORO, P., PETRESCHI, R., AND SIME- ONE, B. 1992. Theoretical results of at most l-bend embeddablhty of cubic graphs. Acta Math. Appl. Sznica, 8, 2, 188-192.Google ScholarGoogle Scholar
  49. LOEBL, M 1991. Efficient maximal cubic graph cuts. In Automata Languages and Programming: 18th International Colloquium (July, Madrid), Lecture Notes tn Computer Science, vot 510, Springer-Verlag, New York, 351-362 Google ScholarGoogle Scholar
  50. MAIER, D., AND STORER, J.A. 1977. A note on the complexity of the superstring problem. Tech Rep. Report No. 233, Princeton Umv As cited m Computers and IntractzabUzty" A Guzde to the Theory of NP-Completeness, M. R Garey, and D. S Johnson, Eds., W. H. Freeman, New York.Google ScholarGoogle Scholar
  51. McGEE, W. F 1960. A minimal cubic graph of girth seven. Canadzan Math. Bull. 3, 149-152.Google ScholarGoogle Scholar
  52. MILLER, G.L. 1977. Graph isomorphmm, general remarks. In Ninth Annual ACM Symposium on Theory of Computing (Boulder, Colo, May), 143-150. Google ScholarGoogle Scholar
  53. MIYANO, S 1989. The lexicographically first maximal subgraph problems. P-completeness and NC algorithms. Math. Syst. Theor. 22, 1, 47-73.Google ScholarGoogle Scholar
  54. MONIEN, B, AND SPECKENMEYER, E. 1983. Some further approximation algorithms for the vertex cover problem. In Trees ~n Algebra and Prograrnmtng, 8th Colloquium (Lille, France, March 1983), Lecture Notes zn Computer Sczence, Sprlnger-Verlag, New York, 341-349 Google ScholarGoogle Scholar
  55. MYNHARDT, C. 1991. On the difference between the domination and independent domination numbers of cubic graphs. In Graph Theory, Combtnatontcs and Applzcatzons, Alvai et al., Eds., Wdey, New York, 939-947Google ScholarGoogle Scholar
  56. NAOLE, J.F. 1967 A new method for combmatorial problems on graphs. In Theory of Graphs Internatzonal Symposium (Internatmnal Computation Centre, Rome), Gordon and Breach, New York, 257-262.Google ScholarGoogle Scholar
  57. ORE, O. 1967. The Four Color Problem. Academ~c Press, New YorkGoogle ScholarGoogle Scholar
  58. PAPADIMITRIOU, C I-{. 1976. The NP-completeness of the bandwidth minimization problem Computzng 16, 263-270Google ScholarGoogle Scholar
  59. PETERSEN, J. 1891. Die Theorie der regulaen Graphen. Acta Math. 15, 193-220.Google ScholarGoogle Scholar
  60. PREPARATA, F., AND VUILLEMIN, J. 1981. The cube-connected cycles: A versatile network for parallel computation Commun. ACM 24, 5, 300-309. Google ScholarGoogle Scholar
  61. READ, R. C., ED. 1972. Graph Theory and Comput~ng. Academic Press, New York.Google ScholarGoogle Scholar
  62. REIF, 01 H. 1985. Depth-first search is inherently sequential Inf. Process. Lett. 20, 5, 229-234Google ScholarGoogle Scholar
  63. SACHS, H. 1963a. On regular graphs with given girth. In Theory of Graphs and Its Applzcations, Proceeding of the Symposzum held in Smolenzce, Academic Press, 91-97.Google ScholarGoogle Scholar
  64. SACHS, H. 1963b. Regular graphs with given girth and restricted circmts. J. London Math. Soc. 38, 423-429.Google ScholarGoogle Scholar
  65. SACHS, H. 1967. Construction of non-Hamiltonian planar regular graphs of degrees 3, 4, and 5 with highest possible connectiwty. In Theory of Graphs Internatzonal Symposium (International Computation Centre, Rome), Gordon and Breach, New York, 373-388.Google ScholarGoogle Scholar
  66. SACHS, H. 1968. Em yon Kozyrev und Grunberg angegebener nicht-Hamiltomshcer kubischer planarer Graph. Beitra&ge zur Graphentheome, p. 127-130. As cited in Graphs and Hypergraphs, 1973, C Berge, Ed., American Elsewer, New York.Google ScholarGoogle Scholar
  67. SCHAEFER, T.J. 1978. The complexity ofsat~sfiability problems. In Proceedzngs of the Tenth Annual ACM Symposzum and the Theory of Computzng (New York, May) 216-226. Google ScholarGoogle Scholar
  68. SCHAFFER, A. A., AND YANNAKAKIS, M. 1991 Simple local search problems that are hard to solve. SIAM J Comput. 20, 1, (Feb.), 56-87. Google ScholarGoogle Scholar
  69. SOUSSE LIE R, R. 1963 Probl~mes plaisants et d~lectables Rev. Fr Rech. Opdrat~onnelle 29, 405-406Google ScholarGoogle Scholar
  70. TAIT, P. G 1878-1880. On the colourlng of maps. Proc. Royal Soc. Edtnborough 10, 501-503.Google ScholarGoogle Scholar
  71. TAIT, P. G. 1884. Listings topolog~e, Phtl. Mag. 17, 5, 30-46. Sczent~fzc Papers, Vol. II, 85-98. As cited in W. T. Tutte, Non-Hamittonian planat maps, m Graph Theory and Computing, 1972, R. C. Read, Ed., Academic Press, New York.Google ScholarGoogle Scholar
  72. TAaJAN, R. E. 1985 Amortized computational complexity. SIAM J. Alg. Dzscrete Meth 2, 6, 306-318.Google ScholarGoogle Scholar
  73. TOMPA, M. 1990 Lower bounds on universal traversal sequences for cycles and other lower degree graphs. SIAM J Comput. 21, 6 Google ScholarGoogle Scholar
  74. TUTTE, W. T. 1972 Non-Hamiltonian planar maps. In Graph Theory and Computzng 1972 R. C. Read, Ed, Academic Press, New York.Google ScholarGoogle Scholar
  75. TUTTE, W. T. 1960. A non-Hamdtoman planar graph. Acta Math. Acad. Sci. Hungar. 11, 371-375.Google ScholarGoogle Scholar
  76. TUTTE, W.T. 1947. A family of cub~caI graph5 Proc Cambmdge PhU. Soc. 43, 459-474Google ScholarGoogle Scholar
  77. TUTTE, W.T. 1946. On Hamdtoman circuits. J. London Math. Soc. 21, 98-101.Google ScholarGoogle Scholar
  78. vAN LEEUWAN, J Ed. 1990. Handbook of Theoret~cal Computer Sctence, volume A: Algorithms and Complexity MIT Press/Elsevier, Cambridge, MA. Google ScholarGoogle Scholar
  79. WALTHER, H. 1966. Uber das problem der exlstenz yon Hamdtonkre~sen in planaren, reguliiren graphen der grade 3, 4 und 5. Dlss. TH IlrnenauGoogle ScholarGoogle Scholar
  80. WALTHER, H. 1965. Ein kubischer, planarer, zyklisch fiinffach zusammenhiingender graph, der keinen Hamiltonkreis besitzt. Wiss. Z. TH II- menau 11, 163-166.Google ScholarGoogle Scholar
  81. WATKIN, J. J. AND WILSON, R.J. 1991. A survey of snarks. In Graph Theory, Combzl~atonics and Applications, Wiley, New York, 1129-1142.Google ScholarGoogle Scholar
  82. YANNAKAK~S, M. 1981. Edge-deletion problems. SIAM J. Comput. 10, 2, 297-309.Google ScholarGoogle Scholar
  83. YANNAKAKIS, M. aND GAVRIL, F. 1979. Edge dominating sets in graphs. Unpublished manuscript cited in Computers and Intract~btlity: A Guide to the Theory of NP-Completeness, M. R. Garey and D. S. Johnson, W. H. Freeman, New York.Google ScholarGoogle Scholar
  84. YANNAKAKIS, M. 1978. Node- and edge-deletion NP-complete problems. In Proceedtng,~ of the Tel~th Annual ACM Symposium on Theory of Computing (San Diego, CA, May) 253-264. Google ScholarGoogle Scholar

Index Terms

  1. Cubic graphs

        Recommendations

        Reviews

        Benjamin L. Schwartz

        A cubic graph is an undirected, loop-free graph, every vertex of which is of degree 3. Cubic graphs arise in various graph theory problems, including Hamiltonian graphs, 4-coloring, matching, planar graphs, and network flows. This paper provides a catalog of the major known results on cubic graphs. Most theorems are not proven, but brief text descriptions of the proof ideas are included. For a few new results by the authors, full proofs are provided. Almost any reader will find new material here; I certainly did. The compilation of results is a valuable service to the field,<__?__Pub Caret> but the bibliography could be much more extensive. The authors cite a few early papers (though far too few), such as the venerable 1930 Kuratowski trailblazer, no longer of theoretical interest but fascinating for historical insight. On 4-colorability, neither Saaty's ill-timed but comprehensive book (just before the conjecture was proven) nor the proof itself, by Appel and Haken, is cited. Can you believe that the discussion of network flows leaves out Ford and Fulkerson__?__ For results, this paper is immensely worthwhile, but for sources, the survey remains to be done.

        Access critical reviews of Computing literature here

        Become a reviewer for Computing Reviews.

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader