skip to main content
10.1145/2024156.2024191acmconferencesArticle/Chapter ViewAbstractPublication Pagessiggraph-asiaConference Proceedingsconference-collections
research-article

Rendering synthetic objects into legacy photographs

Published:12 December 2011Publication History

ABSTRACT

We propose a method to realistically insert synthetic objects into existing photographs without requiring access to the scene or any additional scene measurements. With a single image and a small amount of annotation, our method creates a physical model of the scene that is suitable for realistically rendering synthetic objects with diffuse, specular, and even glowing materials while accounting for lighting interactions between the objects and the scene. We demonstrate in a user study that synthetic images produced by our method are confusable with real scenes, even for people who believe they are good at telling the difference. Further, our study shows that our method is competitive with other insertion methods while requiring less scene information. We also collected new illumination and reflectance datasets; renderings produced by our system compare well to ground truth. Our system has applications in the movie and gaming industry, as well as home decorating and user content creation, among others.

Skip Supplemental Material Section

Supplemental Material

a157-karsch.mov

mov

73.6 MB

References

  1. Alnasser, M., and Foroosh, H. 2006. Image-based rendering of synthetic diffuse objects in natural scenes. In ICPR, 787--790. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Barrow, H., and Tenenbaum, J. 1978. Recovering intrinsic scene characteristics from images. In Comp. Vision Sys., 3--26.Google ScholarGoogle Scholar
  3. Blake, A. 1985. Boundary conditions for lightness computation in mondrian world. Computer Vision, Graphics and Image Processing 32, 314--327.Google ScholarGoogle ScholarCross RefCross Ref
  4. Boivin, S., and Gagalowicz, A. 2001. Image-based rendering of diffuse, specular and glossy surfaces from a single image. In Proc. ACM SIGGRAPH, 107--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Brelstaff, G., and Blake, A. 1987. Computing lightness. Pattern Recognition Letters 5, 2, 129--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Carroll, R., Ramamoorthi, R., and Agrawala, M. 2011. Illumination decomposition for material recoloring with consistent interreflections. ACM Trans. Graph. 30 (August), 43:1--43:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Cossairt, O., Nayar, S., and Ramamoorthi, R. 2008. Light field transfer: global illumination between real and synthetic objects. ACM Trans. Graph. 27 (August), 57:1--57:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Criminisi, A., Reid, I., and Zisserman, A. 2000. Single view metrology. Int. J. Comput. Vision 40 (November), 123--148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Debevec, P. 1998. Rendering synthetic objects into real scenes: bridging traditional and image-based graphics with global illumination and high dynamic range photography. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques, SIGGRAPH '98, 189--198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Farenzena, M., and Fusiello, A. 2007. Recovering intrinsic images using an illumination invariant image. In ICIP, 485--488.Google ScholarGoogle Scholar
  11. Fournier, A., Gunawan, A. S., and Romanzin, C. 1993. Common illumination between real and computer generated scenes. In Proceedings of Graphics Interface '93, 254--262.Google ScholarGoogle Scholar
  12. Funt, B. V., Drew, M. S., and Brockington, M. 1992. Recovering shading from color images. In ECCV, 124--132. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Furukawa, Y., and Ponce, J. 2010. Accurate, dense, and robust multiview stereopsis. IEEE PAMI 32 (August), 1362--1376. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Greger, G., Shirley, P., Hubbard, P. M., and Greenberg, D. P. 1998. The irradiance volume. IEEE Computer Graphics and Applications 18, 32--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Grosse, R., Johnson, M. K., Adelson, E. H., and Freeman, W. T. 2009. Ground-truth dataset and baseline evaluations for intrinsic image algorithms. In ICCV, 2335--2342.Google ScholarGoogle Scholar
  16. Guo, R., Dai, Q., and Hoiem, D. 2011. Single-image shadow detection and removal using paired regions. In CVPR, 2033--2040. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Hartley, R., and Zisserman, A. 2003. Multiple View Geometry in Computer Vision, 2 ed. Cambridge University Press, New York, NY, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Hedau, V., Hoiem, D., and Forsyth, D. 2009. Recovering the spatial layout of cluttered rooms. In ICCV, 1849--1856.Google ScholarGoogle Scholar
  19. Hoiem, D., Efros, A. A., and Hebert, M. 2005. Automatic photo pop-up. ACM Trans. Graph. 24 (July), 577--584. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Horn, B. K. P. 1974. Determining lightness from an image. Computer Vision, Graphics and Image Processing 3, 277--299.Google ScholarGoogle ScholarCross RefCross Ref
  21. Horry, Y., Anjyo, K.-I., and Arai, K. 1997. Tour into the picture: using a spidery mesh interface to make animation from a single image. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques, SIGGRAPH '97, 225--232. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kang, H. W., Pyo, S. H., Anjyo, K., and Shin, S. Y. 2001. Tour into the picture using a vanishing line and its extension to panoramic images. Computer Graphics Forum 20, 3, 132--141.Google ScholarGoogle ScholarCross RefCross Ref
  23. Kee, E., and Farid, H. 2010. Exposing digital forgeries from 3-d lighting environments. In WIFS, 1--6.Google ScholarGoogle Scholar
  24. Khan, E. A., Reinhard, E., Fleming, R. W., and Bülthoff, H. H. 2006. Image-based material editing. ACM Trans. Graph. 25 (July), 654--663. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Lalonde, J.-F., and Efros, A. A. 2007. Using color compatibility for assessing image realism. In ICCV, 1--8.Google ScholarGoogle Scholar
  26. Lalonde, J.-F., Hoiem, D., Efros, A. A., Rother, C., Winn, J., and Criminisi, A. 2007. Photo clip art. ACM Trans. Graph. 26 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Lalonde, J.-F., Efros, A. A., and Narasimhan, S. G. 2009. Webcam clip art: appearance and illuminant transfer from time-lapse sequences. ACM Trans. Graph. 28 (December), 131:1--131:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Land, E., and McCann, J. 1971. Lightness and retinex theory. J. Opt. Soc. Am. 61, 1, 1--11.Google ScholarGoogle ScholarCross RefCross Ref
  29. Lee, D. C., Hebert, M., and Kanade, T. 2009. Geometric reasoning for single image structure recovery. In CVPR, 2136--2143.Google ScholarGoogle Scholar
  30. Lee, D. C., Gupta, A., Hebert, M., and Kanade, T. 2010. Estimating spatial layout of rooms using volumetric reasoning about objects and surfaces. Advances in Neural Information Processing Systems (NIPS) 24 (November), 1288--1296.Google ScholarGoogle Scholar
  31. Levin, A., Rav-Acha, A., and Lischinski, D. 2008. Spectral matting. IEEE PAMI 30 (October), 1699--1712. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Liebowitz, D., Criminisi, A., and Zisserman, A. 1999. Creating architectural models from images. In Eurographics, vol. 18, 39--50.Google ScholarGoogle ScholarCross RefCross Ref
  33. Lopez-Moreno, J., Hadap, S., Reinhard, E., and Gutierrez, D. 2010. Compositing images through light source detection. Computers & Graphics 34, 6, 698--707. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Merrell, P., Schkufza, E., Li, Z., Agrawala, M., and Koltun, V. 2011. Interactive furniture layout using interior design guidelines. ACM Trans. Graph. 30 (August), 87:1--87:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Mury, A. A., Pont, S. C., and Koenderink, J. J. 2009. Representing the light field in finite three-dimensional spaces from sparse discrete samples. Applied Optics 48, 3 (Jan), 450--457.Google ScholarGoogle ScholarCross RefCross Ref
  36. Oh, B. M., Chen, M., Dorsey, J., and Durand, F. 2001. Image-based modeling and photo editing. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, SIGGRAPH '01, 433--442. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Rother, C. 2002. A new approach to vanishing point detection in architectural environments. IVC 20, 9--10 (August), 647--655.Google ScholarGoogle ScholarCross RefCross Ref
  38. Sato, I., Sato, Y., and Ikeuchi, K. 2003. Illumination from shadows. IEEE PAMI 25, 3, 290--300. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Saxena, A., Sun, M., and Ng, A. Y. 2008. Make3d: depth perception from a single still image. In Proceedings of the 23rd national conference on Artificial intelligence - Volume 3, AAAI Press, 1571--1576. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Sinha, S. N., Steedly, D., Szeliski, R., Agrawala, M., and Pollefeys, M. 2008. Interactive 3d architectural modeling from unordered photo collections. ACM Trans. Graph. 27 (December), 159:1--159:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Tappen, M. F., Freeman, W. T., and Adelson, E. H. 2005. Recovering intrinsic images from a single image. IEEE Trans. Pattern Anal. Mach. Intell. 27 (September), 1459--1472. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Tappen, M. F., Adelson, E. H., and Freeman, W. T. 2006. Estimating intrinsic component images using non-linear regression. In CVPR, vol. 2, 1992--1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Wang, Y., and Samaras, D. 2003. Estimation of multiple directional light sources for synthesis of augmented reality images. Graphical Models 65, 4, 185--205. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Weiss, Y. 2001. Deriving intrinsic images from image sequences. In ICCV, II: 68--75.Google ScholarGoogle Scholar
  45. Yeung, S.-K., Tang, C.-K., Brown, M. S., and Kang, S. B. 2011. Matting and compositing of transparent and refractive objects. ACM Trans. Graph. 30 (February), 2:1--2:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Yu, Y., Debevec, P., Malik, J., and Hawkins, T. 1999. Inverse global illumination: recovering reflectance models of real scenes from photographs. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques, SIGGRAPH '99, 215--224. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Yu, L.-F., Yeung, S.-K., Tang, C.-K., Terzopoulos, D., Chan, T. F., and Osher, S. J. 2011. Make it home: automatic optimization of furniture arrangement. ACM Trans. Graph. 30 (August), 86:1--86:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Zhang, L., Dugas-Phocion, G., Samson, J., and Seitz, S. 2001. Single view modeling of free-form scenes. In CVPR, 990--997.Google ScholarGoogle Scholar

Index Terms

  1. Rendering synthetic objects into legacy photographs

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SA '11: Proceedings of the 2011 SIGGRAPH Asia Conference
        December 2011
        730 pages
        ISBN:9781450308076
        DOI:10.1145/2024156

        Copyright © 2011 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 12 December 2011

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate178of869submissions,20%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader