skip to main content
research-article

Eulerian solid simulation with contact

Published:25 July 2011Publication History
Skip Abstract Section

Abstract

Simulating viscoelastic solids undergoing large, nonlinear deformations in close contact is challenging. In addition to inter-object contact, methods relying on Lagrangian discretizations must handle degenerate cases by explicitly remeshing or resampling the object. Eulerian methods, which discretize space itself, provide an interesting alternative due to the fixed nature of the discretization. In this paper we present a new Eulerian method for viscoelastic materials that features a collision detection and resolution scheme which does not require explicit surface tracking to achieve accurate collision response. Time-stepping with contact is performed by the efficient solution of large sparse quadratic programs; this avoids constraint sticking and other difficulties. Simulation and collision processing can share the same uniform grid, making the algorithm easy to parallelize. We demonstrate an implementation of all the steps of the algorithm on the GPU. The method is effective for simulation of complicated contact scenarios involving multiple highly deformable objects, and can directly simulate volumetric models obtained from medical imaging techniques such as CT and MRI.

Skip Supplemental Material Section

Supplemental Material

tp017_11.mp4

mp4

23 MB

References

  1. Allard, J., Faure, F., Courtecuisse, H., Falipou, F., Duriez, C., and Kry, P. 2010. Volume contact constraints at arbitrary resolution. ACM Trans. Graph. 29, 4 (July), 82:1--82:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Banks, J. W., Schwendeman, D. W., Kapila, A. K., and Henshaw, W. D. 2007. A high-resolution Godunov method for compressible multi-material flow on overlapping grids. J. Comput. Phys. 223, 1, 262--297. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bargteil, A. W., Wojtan, C., Hodgins, J. K., and Turk, G. 2007. A Finite Element Method for Animating Large Viscoplastic Flow. ACM Trans. Graph. 26, 3 (July), 16:1--16:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Barton, P. T., and Drikakis, D. 2010. An Eulerian method for multi-component problems in non-linear elasticity with sliding interfaces. J. Comput. Phys. 229, 15, 5518--5540. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Batty, C., Bertails, F., and Bridson, R. 2007. A fast variational framework for accurate solid-fluid coupling. ACM Trans. Graph. 26, 3 (July), 100:1--100:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bell, N., and Garland, M., 2010. Cusp: Generic parallel algorithms for sparse matrix and graph computations. Version 0.1.0. http://cusp-library.googlecode.com.Google ScholarGoogle Scholar
  7. Brochu, T., Batty, C., and Bridson, R. 2010. Matching fluid simulation elements to surface geometry and topology. ACM Trans. Graph. 29, 4 (July), 47:1--47:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Carlson, M., Mucha, P. J., Van Horn, III, R. B., and Turk, G. 2002. Melting and flowing. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation, SCA '02, 167--174. Google ScholarGoogle Scholar
  9. Carlson, M., Mucha, P. J., and Turk, G. 2004. Rigid fluid: animating the interplay between rigid bodies and fluid. ACM Trans. Graph. 23 (August), 377--384. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Cline, M., and Pai, D. 2003. Post-stabilization for rigid body simulation with contact and constraints. In Proc. ICRA'03, vol. 3, 3744--3751.Google ScholarGoogle Scholar
  11. Desbrun, M., and Gascuel, M. P. 1996. Smoothed particles: a new paradigm for animating highly deformable bodies. In Proceedings of the Eurographics workshop on Computer animation and simulation, 61--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Enright, D., Fedkiw, R., Ferziger, J., and Mitchell, I. 2002. A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183, 1, 83--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Faure, F., Allard, J., and Nesme, M. 2007. Eulerian Contact for Versatile Collision Processing. Research Report RR-6203, INRIA.Google ScholarGoogle Scholar
  14. Fedkiw, R. P., Aslam, T., Merriman, B., and Osher, S. 1999. A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152, 2, 457--492. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. Graph. Models Image Process. 58, 5, 471--483. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Gilles, B., Bousquet, G., Faure, F., and Pai, D. K. 2011. Frame-based elastic models. ACM Trans. Graph. 30, 2 (April), 15:2--15:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Goktekin, T. G., Bargteil, A. W., and O'Brien, J. F. 2004. A method for animating viscoelastic fluids. ACM Trans. Graph. 23 (August), 463--468. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Harris, M., Sengupta, S., and Owens, J. D. 2007. Parallel prefix sum (scan) with CUDA. In GPU Gems 3, H. Nguyen, Ed. Addison Wesley.Google ScholarGoogle Scholar
  19. Humphrey, J., Price, D., Spagnoli, K., Paolini, A., and Kelmelis, E. 2010. CULA: hybrid GPU accelerated linear algebra routines. In Proc. SPIE, vol. 7705, 1.Google ScholarGoogle Scholar
  20. Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, SCA '04, 131--140. Google ScholarGoogle Scholar
  21. Kamrin, K., and Nave, J.-C. 2009. An eulerian approach to the simulation of deformable solids: Application to finite-strain elasticity. Submitted (available: http://arxiv.org/PS_cache/arxiv/pdf/0901/0901.3799v2.pdf).Google ScholarGoogle Scholar
  22. Kaufman, D. M., Sueda, S., James, D. L., and Pai, D. K. 2008. Staggered projections for frictional contact in multibody systems. ACM Trans. Graph. 27, 5 (December), 164:1--164:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Labelle, F., and Shewchuk, J. R. 2007. Isosurface stuffing: fast tetrahedral meshes with good dihedral angles. ACM Trans. Graph. 26, 3 (July), 57:1--57:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Le Grand, S. 2007. Broad-Phase Collision Detection with CUDA. In GPU Gems 3, H. Nguyen, Ed. Addison-Wesley.Google ScholarGoogle Scholar
  25. Lévy, B., and Liu, Y. 2010. L p Centroidal Voronoi Tessellation and its applications. ACM Trans. Graph. 29, 4 (July), 119:1--119:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Losasso, F., Shinar, T., Selle, A., and Fedkiw, R. 2006. Multiple interacting liquids. ACM Trans. Graph. 25, 3 (July), 812--819. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. McAdams, A., Selle, A., Ward, K., Sifakis, E., and Teran, J. 2009. Detail preserving continuum simulation of straight hair. ACM Trans. Graph. 28, 3 (July), 62:1--62:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Mehrotra, S. 1992. On the Implementation of a Primal-Dual Interior Point Method. SIOPT 2, 4, 575--601.Google ScholarGoogle ScholarCross RefCross Ref
  29. Miller, G., and Colella, P. 2001. A High-Order Eulerian Godunov Method for Elastic-Plastic Flow in Solids* 1. J. Comput. Phys. 167, 1, 131--176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Moreau, J. J. 1966. Quadratic programming in mechanics: One-sided constraints. Journal SIAM Control 4, 1, 153--158.Google ScholarGoogle ScholarCross RefCross Ref
  31. Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and Alexa, M. 2004. Point based animation of elastic, plastic and melting objects. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, SCA '04, 141--151. Google ScholarGoogle Scholar
  32. Müller, M., Teschner, M., and Gross, M. 2004. Physically-based simulation of objects represented by surface meshes. In Proc. CGI 2004, 26--33. Google ScholarGoogle Scholar
  33. Narain, R., Golas, A., and Lin, M. C. 2010. Free-flowing granular materials with two-way solid coupling. ACM Trans. Graph. 29 (December), 173:1--173:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Nocedal, J., and Wright, S. 1999. Numerical Optimization. Springer-Verlag.Google ScholarGoogle Scholar
  35. NVIDIA Corporation, 2010. CUDA Programming Guide.Google ScholarGoogle Scholar
  36. Osher, S., and Fedkiw, R. 2002. Level set methods and dynamic implicit surfaces. Springer-Verlag.Google ScholarGoogle Scholar
  37. Petrovic, L., Henne, M., and Anderson, J. 2005. Volumetric methods for simulation and rendering of hair. Tech. rep., Pixar Animation Studios.Google ScholarGoogle Scholar
  38. Robinson-Mosher, A., English, R. E., and Fedkiw, R. 2009. Accurate tangential velocities for solid fluid coupling. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA '09, 227--236. Google ScholarGoogle Scholar
  39. Roettger, S., 2011. The volume library. http://www9.informatik.uni-erlangen.de/External/vollib/.Google ScholarGoogle Scholar
  40. Solenthaler, B., Schläfli, J., and Pajarola, R. 2007. A unified particle model for fluid-solid interactions. Computer Animation and Virtual Worlds 18, 1, 69--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Sulsky, D., Chen, Z., and Schreyer, H. 1994. A particle method for history-dependent materials. Computer Methods in Applied Mechanics and Engineering 118, 1-2, 179--196.Google ScholarGoogle ScholarCross RefCross Ref
  42. Sulsky, D., Zhou, S., and Schreyer, H. 1995. Application of a particle-in-cell method to solid mechanics. Computer Physics Communications 87, 1-2, 236--252.Google ScholarGoogle ScholarCross RefCross Ref
  43. Teran, J., Blemker, S., Hing, V. N. T., and Fedkiw, R. 2003. Finite volume methods for the simulation of skeletal muscle. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, SCA '03, 68--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Computer Graphics (Proceedings of SIGGRAPH 87), vol. 21, ACM, 205--214. Google ScholarGoogle Scholar
  45. Tran, L. B., and Udaykumar, H. S. 2004. A particle-level set-based sharp interface cartesian grid method for impact, penetration, and void collapse. J. Comput. Phys. 193, 2, 469--510. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Trangenstein, J. 1994. A second-order Godunov algorithm for two-dimensional solid mechanics. Computational Mechanics 13, 5, 343--359.Google ScholarGoogle ScholarCross RefCross Ref
  47. Wicke, M., Ritchie, D., Klingner, B. M., Burke, S., Shewchuk, J. R., and O'Brien, J. F. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Trans. Graph. 29 (July), 49:1--49:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. ACM Trans. Graph. 24, 3 (July), 965--972. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Eulerian solid simulation with contact

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 30, Issue 4
      July 2011
      829 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2010324
      Issue’s Table of Contents

      Copyright © 2011 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 25 July 2011
      Published in tog Volume 30, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader