skip to main content
10.1145/1877808.1877817acmconferencesArticle/Chapter ViewAbstractPublication PagesmmConference Proceedingsconference-collections
research-article

Volumetric heat kernel signatures

Published:25 October 2010Publication History

ABSTRACT

Invariant shape descriptors are instrumental in numerous shape analysis tasks including deformable shape comparison, registration, classification, and retrieval. Most existing constructions model a 3D shape as a two-dimensional surface describing the shape boundary, typically represented as a triangular mesh or a point cloud. Using intrinsic properties of the surface, invariant descriptors can be designed. One such example is the recently introduced heat kernel signature, based on the Laplace-Beltrami operator of the surface. In many applications, however, a volumetric shape model is more natural and convenient. Moreover, modeling shape deformations as approximate isometries of the volume of an object, rather than its boundary, better captures natural behavior of non-rigid deformations in many cases. Here, we extend the idea of heat kernel signature to robust isometry-invariant volumetric descriptors, and show their utility in shape retrieval. The proposed approach achieves state-of-the-art results on the SHREC 2010 large-scale shape retrieval benchmark.

References

  1. S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using shape contexts. Trans. PAMI, pages 509--522, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. M. Ben-Chen, O. Weber, and C. Gotsman. Characterizing shape using conformal factors. In Proc. 3DOR, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. P. Bérard, G. Besson, and S. Gallot. Embedding riemannian manifolds by their heat kernel. Geometric and Functional Analysis, 4(4):373--398, 1994.Google ScholarGoogle ScholarCross RefCross Ref
  4. S. Biasotti, S. Marini, M. Mortara, and G. Patané. An overview on properties and efficacy of topological skeletons in shape modeling. In Proc. SMI, pages 245--254, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. A. M. Bronstein, M. M. Bronstein, A. M. Bruckstein, and R. Kimmel. Analysis of two-dimensional non-rigid shapes. IJCV, 78(1):67--88, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. A. M. Bronstein, M. M. Bronstein, U. Castellani, B. Falcidieno, A. Fusiello, A. Godil, L. J. Guibas, I. Kokkinos, Z. Lian, M. Ovsjanikov, G. Patané, M. Spagnuolo, and R. Toldo. Shrec 2010: robust large-scale shape retrieval benchmark. In Proc. 3DOR, 2010.Google ScholarGoogle Scholar
  7. A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. PNAS, 103(5):1168--1172, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  8. A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Numerical geometry of non-rigid shapes. Springer-Verlag New York Inc, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. A. M. Bronstein, M. M. Bronstein, M. Ovsjanikov, and L. J. Guibas. Shape google: a computer vision approach to invariant shape retrieval. In Proc. NORDIA, 2009.Google ScholarGoogle Scholar
  10. M. M. Bronstein and I. Kokkinos. Scale-invariant heat kernel signatures for non-rigid shape recognition. In Proc. CVPR, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  11. U. Clarenz, M. Rumpf, and A. Telea. Robust feature detection and local classification for surfaces based on moment analysis. Trans. Visualization and Computer Graphics, 10(5):516--524, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. A. Dubrovina and R. Kimmel. Matching shapes by eigendecomposition of the Laplace-Beltrami operator. In Proc. 3DPVT, 2010.Google ScholarGoogle Scholar
  13. A. Elad and R. Kimmel. Bending invariant representations for surfaces. In Proc. CVPR, pages 168--174, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  14. R. Gal, A. Shamir, and D. Cohen-Or. Pose-oblivious shape signature. Trans. Visualization and Computer Graphics, 13(2):261--271, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. N. Gelfand, N. J. Mitra, L. J. Guibas, and H. Pottmann. Robust global registration. In Proc. SGP, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. M. Hilaga, Y. Shinagawa, T. Kohmura, and T. Kunii. Topology matching for fully automatic similarity estimation of 3D shapes. In Proc. Computer Graphics and Interactive Techniques, pages 203--212, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. Ion, G. Peyré, Y. Haxhimusa, S. Peltier, W. G. Kropatsch, and L. Cohen. Shape matching using the geodesic eccentricity transform--a study. In Proc. Workshop of the Austrian Association for Pattern Recognition (OAGM/AAPR), 2007.Google ScholarGoogle Scholar
  18. P. W. Jones, M. Maggioni, and R. Schul. Manifold parametrizations by eigenfunctions of the Laplacian and heat kernels. PNAS, 105(6):1803, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  19. M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Rotation invariant spherical harmonic representation of 3D shape descriptors. In Proc. SGP, pages 156--164, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Symmetry descriptors and 3D shape matching. In Proc. SGP, pages 115--123, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. H. Ling and D. W. Jacobs. Shape classification using the inner-distance. Trans. PAMI, 29(2):286--299, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. D. Lowe. Distinctive image features from scale-invariant keypoint. IJCV, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. F. Mémoli and G. Sapiro. A theoretical and computational framework for isometry invariant recognition of point cloud data. Foundations of Computational Mathematics, 5:313--346, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. N. J. Mitra, L. J. Guibas, J. Giesen, and M. Pauly. Probabilistic fingerprints for shapes. In Proc. SGP, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. M. Novotni and R. Klein. 3D Zernike descriptors for content based shape retrieval. In Proc. ACM Symp. Solid Modeling and Applications, pages 216--225, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin. Shape distributions. TOG, 21(4):807--832, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. E. Paquet, M. Rioux, A. Murching, T. Naveen, and A. Tabatabai. Description of shape information for 2-D and 3-D objects. Signal Processing: Image Communication, 16(1--2):103--122, 2000.Google ScholarGoogle Scholar
  28. D. Raviv, A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Symmetries of non-rigid shapes. In Proc. NRTL, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  29. M. Reuter, F.-E. Wolter, and N. Peinecke. Laplace-spectra as fingerprints for shape matching. In Proc. ACM Symp. Solid and Physical Modeling, pages 101--106, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. R. Rustamov. Robust volumetric shape descriptor. In Proc. 3DOR, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. R. M. Rustamov. Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In Proc. SGP, pages 225--233, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. P. Shilane and T. Funkhauser. Selecting distinctive 3D shape descriptors for similarity retrieval. In Proc. Shape Modelling and Applications, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser. The Princeton shape benchmark. In Proc. SMI, pages 167--178, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. J. Sivic and A. Zisserman. Video google: A text retrieval approach to object matching in videos. In Proc. CVPR, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  35. R. Sumner and J. Popović. Deformation transfer for triangle meshes. In Proc. Conf. Computer Graphics and Interactive Techniques, pages 399--405, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. J. Sun, M. Ovsjanikov, and L. J. Guibas. A concise and provably informative multi-scale signature based on heat diffusion. In Proc. SGP, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. H. Sundar, D. Silver, N. Gagvani, and S. Dickinson. Skeleton based shape matching and retrieval. In Proc. SMI, volume 130, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. A. Tal, M. Elad, and S. Ar. Content based retrieval of VRML objects - an iterative and interactive approach. In Proc. Eurographics Workshop on Multimedia, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. N. Thorstensen and R. Keriven. Non-rigid shape matching using geometry and photometry. In Proc. CVPR, 2009.Google ScholarGoogle Scholar
  40. R. Toldo, U. Castellani, and A. Fusiello. Visual vocabulary signature for 3D object retrieval and partial matching. In Proc. 3DOR, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. A. Zaharescu, E. Boyer, K. Varanasi, and R. Horaud. Surface feature detection and description with applications to mesh matching. In Proc. CVPR, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  42. C. Zhang and T. Chen. Efficient feature extraction for 2D/3D objects in meshrepresentation. In Proc. ICIP, volume 3, 2001.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Volumetric heat kernel signatures

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          3DOR '10: Proceedings of the ACM workshop on 3D object retrieval
          October 2010
          96 pages
          ISBN:9781450301602
          DOI:10.1145/1877808

          Copyright © 2010 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 25 October 2010

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Upcoming Conference

          MM '24
          MM '24: The 32nd ACM International Conference on Multimedia
          October 28 - November 1, 2024
          Melbourne , VIC , Australia

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader