skip to main content
10.1145/1774088.1774415acmconferencesArticle/Chapter ViewAbstractPublication PagessacConference Proceedingsconference-collections
research-article

Expression microarray classification using topic models

Published:22 March 2010Publication History

ABSTRACT

Classification of samples in expression microarray experiments represents a crucial task in bioinformatics and biomedicine. In this paper this scenario is addressed by employing a particular class of statistical approaches, called Topic Models. These models, firstly introduced in the text mining community, permit to extract from a set of objects (typically documents) an interpretable and rich description, based on an intermediate representation called topics (or processes). In this paper the expression microarray classification task is cast into this probabilistic context, providing a parallelism with the text mining domain and an interpretation. Two different topic models are investigated, namely the Probabilistic Latent Semantic Analysis (PLSA) and the Latent Dirichlet Allocation (LDA). An experimental evaluation of the proposed methodologies on three standard datasets confirms their effectiveness, also in comparison with other classification methodologies.

References

  1. U. Alon, N. Barkai, D. Notterman, K. Gish, S. Ybarra, D. Mack, and A. Levine. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci., 96(12):6745--6750, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  2. S. Armstrong, J. Staunton, L. Silverman, R. Pieters, M. den Boer, M. Minden, S. Sallan, E. Lander, T. Golub, and S. Korsmeyer. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nature Genetics, 30(1):41--47, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  3. D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. J. of Mach. Learn. Res., 3:993--1022, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. A. Bosch, A. Zisserman, and X. Munoz. Scene classification via PLSA. In Proc. of European Conference on Computer Vision, volume 4, pages 517--530, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. N. Brändle, H. Bischof, and H. Lapp. Robust DNA microarray image analysis. Machine Vision and Applications, 15:11--28, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. G. Brelstaff, M. Bicego, N. Culeddu, and M. Chessa. Bag of peaks: interpretation of nmr spectrometry. Bioinformatics, 25(2):258--264, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. Cristani, A. Perina, U. Castellani, and V. Murino. Geo-located image analysis using latent representations. In Proc. Conf. Computer Vision and Pattern Recognition, 2008, pages 1--8, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. B, 39:1--38, 1977.Google ScholarGoogle ScholarCross RefCross Ref
  9. C. Ding and H. Peng. Minimum redundancy feature selection from microarray gene expression data. In Proc. of IEEE Computer Society Bioinformatics Conference, pages 523--529, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley and Sons, second edition, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. M. Girolami and A. Kabán. On an equivalence between plsi and lda. In Proc. of ACM SIGIR conf. on Research and development in informaion retrieval, pages 433--434, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. T. Golub, D. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. Mesirov, H. Coller, M. Loh, J. Downing, M. Caligiuri, C. Bloomfield, and E. Lander. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286(5439):531--537, October 1999.Google ScholarGoogle ScholarCross RefCross Ref
  13. T. Hofmann. Unsupervised learning by probabilistic latent semantic analysis. Mach. Learn., 42(1--2):177--196, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. Lee, J. Lee, M. Park, and S. Song. An extensive comparison of recent classification tools applied to microarray data. Computational Statistics & Data Analysis, 48(4):869--885, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  15. H. Peng, F. Long, and C. Ding. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. on Pattern Analysis and Machine Intelligence, 27(8):1226---1238, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. S. Rogers, M. Girolami, C. Campbell, and R. Breitling. The latent process decomposition of cdna microarray data sets. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2(2):143--156, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. Statnikov, C. Aliferis, I. Tsamardinos, D. Hardin, and S. Levy. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics, 21(5):631--643, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. F. Valafar. Pattern recognition techniques in microarray data analysis: A survey. Annals of the New York Academy of Sciences, 980:41--64, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  19. Y. Ying, P. li, and C. Campbell. A marginalized variational bayesian approach to the analysis of array data. BMC Proceedings, 2(Suppl 4): S7, 2008.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Expression microarray classification using topic models

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SAC '10: Proceedings of the 2010 ACM Symposium on Applied Computing
        March 2010
        2712 pages
        ISBN:9781605586397
        DOI:10.1145/1774088

        Copyright © 2010 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 22 March 2010

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        SAC '10 Paper Acceptance Rate364of1,353submissions,27%Overall Acceptance Rate1,650of6,669submissions,25%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader