skip to main content
10.1145/1753326.1753500acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Lumino: tangible blocks for tabletop computers based on glass fiber bundles

Published:10 April 2010Publication History

ABSTRACT

Tabletop computers based on diffuse illumination can track fiducial markers placed on the table's surface. In this paper, we demonstrate how to do the same with objects arranged in a three-dimensional structure without modifying the table. We present lumino, a system of building blocks. In addition to a marker, each block contains a glass fiber bundle. The bundle optically guides the light reflected off markers in the higher levels down to the table surface, where the table's built-in camera reads it. While guiding marker images down, the bundle optically scales and rearranges them. It thereby fits the images of an entire vertical arrangement of markers into the horizontal space usually occupied by a single 2D marker. We present six classes of blocks and matching marker designs, each of which is optimized for different requirements. We show three demo applications. One of them is a construction kit that logs and critiques constructions. The presented blocks are unpowered and maintenance-free, keeping larger numbers of blocks manageable.

Skip Supplemental Material Section

Supplemental Material

p1165.mp4

mp4

10.8 MB

References

  1. Acceptance Cone wikipedia.org/wiki/Acceptance_coneGoogle ScholarGoogle Scholar
  2. Anderson, D., Frankel, J., Marks, J., Leigh, D., Sullivan, E. Yedidia, J., and Ryall, K (1999). Building virtual structures with physical blocks. In Proc. UIST '99, 71--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Anoto Pen. http://www.anoto.comGoogle ScholarGoogle Scholar
  4. Azad, P., Gockel, T., Dillmann R. (2008). Computer Vision -- Principles and Practice. Elektor International Media BVGoogle ScholarGoogle Scholar
  5. Bartindale, T. and Harrison, C. Stacks on the Surface: Resolving Physical Order Using Fiducial Markers With Structured Transparency. In Proc. Tabletop '09, 4 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bartindale, T. Fiberboard. tom.bartindale.com/fiberboardGoogle ScholarGoogle Scholar
  7. Couture, N., Rivière, G., and Reuter, P. GeoTUI: a tangible user interface for geoscience. In Proc. TEI '08, 89--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Crevoisier, A. and Polotti, P. Tangible acoustic inter-faces and their applications for the design of new musical instruments. In Proc. NIME '05, 97--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Fiala, M. ARTag, a fiducial marker system using digital techniques. In Proc. CVPR '05, 20--25. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Fiber optics http://en.wikipedia.org/wiki/Fiber_opticsGoogle ScholarGoogle Scholar
  11. Fitzmaurice, W., Ishii, H., and Buxton, W. Bricks: Laying the Foundations for Graspable User Interfaces. In Proc CHI '95, 442--449. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Fujii, K., Shimamura, J., Arakawa, K., and Arikawa, T. Tangible search for stacked objects. In Proc. CHI '03, 848--849. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Gorbet, M., Orth, M., and Ishii, H. Triangles: tangible interface for manipulation and exploration of digital information topography. In Proc. CHI '98, 49--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Greenberg, S. and Buxton, B. Usability evaluation considered harmful (some of the time). In Proc. CHI '08, 111--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Guo, C., and Sharlin, E. Exploring the Use of Tangible User Interfaces for Human-Robot Interaction: A Comparative Study. In Proc. CHI'08, 121--130 Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Haller, M., Brandl, P., Leithinger D., Leitner J., Seifried T., and Billinghurst, M. Shared design space: sketching ideas using digital pens and a large augmented tabletop setup. In Proc. ICAT '06, 948--959. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Hilliges, O., Baur, D., and Butz, A. Photohelix: browsing, sorting and sharing digital photo collections. In Proc. Tabletop '07, 87--94.Google ScholarGoogle Scholar
  18. Ishii, H., Ullmer, B. Tangible bits: towards seamless interfaces between people, bits and atoms. In Proc. CHI '97, 234--241. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Izadi, S., Hodges, S., Taylor, S., Rosenfeld, D., Villar, N., Butler, A., and Westhues, J. Going beyond the display: a surface technology with an electronically switchable diffuser. In Proc UIST '08, 269--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Jordà, S, Geiger, G., Alonso, M., Kaltenbrunner, M. The reacTable: exploring the synergy between live music performance and tabletop tangible interfaces. In Proc. TEI '07, 139--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kakehi, Y., Naemura, T., and Matsushita, M. Tablescape Plus: interactive small-sized vertical displays on a horizontal tabletop display. In Proc. Tabletop '07, 155--162.Google ScholarGoogle Scholar
  22. Kitamura, Y., Itoh, Y., and Kishino, F. Real-time 3D interaction with activeCube. In CHI Ext. Abstr. '01, 355--356. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. McNerney, T. (2004). From turtles to tangible programming bricks: explorations in physical language design. Personal and Ubiquitous Computing 8, 5, 326--337. Google ScholarGoogle ScholarCross RefCross Ref
  24. Moeslund, T. and Granum, E. A Survey of Computer Vision-Based Human Motion Capture. In Proc. CVIU '01, 231--268. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Olwal, A., and A. Wilson. SurfaceFusion: unobtrusive tracking of everyday objects in tangible user interfaces. In Proc. GI '08, 235--242. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Open CV http://sourceforge.net/projects/opencvlibraryGoogle ScholarGoogle Scholar
  27. Paradiso, J.A., Hsiao, K., and Benbasat, A. Tangible music interfaces using passive magnetic tags. In Proc. NIME'01, 1--4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Patten, J., Ishii, H., Hines, J., and Pangaro, G. Sense-table: a wireless object tracking platform for tangible user interfaces. In Proc. CHI '01, 253--260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Peli E, Siegmund WP. (1995) Fiber-optic reading magnifiers for the visually impaired. J. Opt. Soc. Am. A. 12, 10, 2274--2285.Google ScholarGoogle ScholarCross RefCross Ref
  30. Plastecs. http://www.kissolar.com/fiber optics.htmlGoogle ScholarGoogle Scholar
  31. Promethean. http://www.prometheanweb.com.Google ScholarGoogle Scholar
  32. Tactex Controls Inc. Kinotex Multi-touch sensors. http://www.tactex.com/files/multitouch_overview.pdfGoogle ScholarGoogle Scholar
  33. Ward, A., Jones, A., and Hopper, A. (1997). A new location technique for the active office. IEEE Pers. Comm. 4, 5, 42--47.Google ScholarGoogle ScholarCross RefCross Ref
  34. Weiss, M., Wagner, J., Jansen, Y., Jennings, R., Khoshabeh, R., Hollan, J.D., and Borchers, J. SLAP widgets: bridging the gap between virtual and physical controls on tabletops. In Proc. CHI '09, 481--490. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Wilson, A. Depth-sensing video cameras for 3D tangible tabletop interaction. In Proc. Tabletop '07, 201--204.Google ScholarGoogle Scholar
  36. Xu, D., Read, J., Mazzone, E., Bron, M. Designing and Testing a Tangible Interface Prototype. In Proc. IDC'07, 25--28. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Lumino: tangible blocks for tabletop computers based on glass fiber bundles

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        CHI '10: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
        April 2010
        2690 pages
        ISBN:9781605589299
        DOI:10.1145/1753326

        Copyright © 2010 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 10 April 2010

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate6,199of26,314submissions,24%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader