skip to main content
10.1145/1667239.1667241acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
research-article

Advanced illumination techniques for GPU-based volume raycasting

Published:03 August 2009Publication History

ABSTRACT

Volume raycasting techniques are important for both visual arts and visualization. They allow efficient generation of visual effects and visualization of scientific data obtained by tomography or numerical simulation. Volume-rendering techniques are also effective for direct rendering of implicit surfaces used for soft-body animation and constructive solid geometry. The focus of this course is on volumetric illumination techniques that approximate physically based light transport in participating media. Such techniques include interactive implementation of soft and hard shadows, ambient occlusion, and simple Monte Carlo-based approaches to global illumination, including translucency and scattering.

Skip Supplemental Material Section

Supplemental Material

References

  1. Michael D. Adams. The JPEG-2000 Still Image Compression Standard. ISO/IEC (ITU-T SG8), September 2001. JTC 1/SC 29/WG 1: N 2412.Google ScholarGoogle Scholar
  2. Chandrit Bajaj, Insung Ihm, and Sanghun Park. 3D RGB image compression for interactive applications. ACM Transactions on Graphics, 20(1):10--38, January 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Kevin M. Beason, Josh Grant, David C. Banks, Brad Futch, and M. Yousuff Hussaini. Pre-computed illumination for isosurfaces. In VDA '94: Proceedings of the conference on Visualization and Data Analysis '06 (SPIE Vol. 6060), pages 1--11, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  4. Uwe Behrens and Ralf Ratering. Adding shadows to a texture-based volume renderer. In VVS '98: Proceedings of the 1998 IEEE symposium on Volume visualization, pages 39--46. ACM Press, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Johanna Beyer, Markus Hadwiger, Torsten Möller, and Laura Fritz. Smooth Mixed-Resolution GPU Volume Rendering. In IEEE/EG International Symposium on Volume and Point-Based Graphics, pages 163--170, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Praveen Bhaniramka and Yves Demange. OpenGL Volumizer: A Toolkit for High Quality Volume Rendering of Large Data Sets. In Proceedings IEEE Visualization 2002, pages 45--53, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J. F. Blinn. Jim blinn's corner: Image compositing--theory. IEEE Computer Graphics and Applications, 14(5), 1994.Google ScholarGoogle Scholar
  8. Imma Boada, Isabel Navazo, and Roberto Scopigno. Multiresolution volume visualization with a texture-based octree. The Visual Computer, 17:185--197, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  9. A. R. Calderbank, Ingrid Daubechies, Wim Sweldens, and Boon-Lock Yeo. Wavelet transforms that map integers to integers. Technical report, Department of Mathematics, Princeton University, August 1996.Google ScholarGoogle Scholar
  10. N. Carr, J. Hall, and J. Hart. GPU Algorithms for Radiosity and Subsurface Scattering. In Proc. Graphics Hardware, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Nathan A. Carr, Jesse D. Hall, and John C. Hart. GPU algorithms for radiosity and subsurface scattering. In HWWS '03: Proceedings of the conference on Graphics Hardware '03, pages 51--59. Eurographics Association, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Yi-Jen Chiang, Cláudio T. Silva, and William J. Schroeder. Interactive out-of-core isosurface extraction. In Proceedings of IEEE Visualization '98, pages 167--174, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Yi-Jen Chiang, Cludio T. Silva, and Willam J. Schroeder. Interactive out-of-core isosurface extraction. In Proceedings IEEE Visualization 1998, pages 167--174, 530, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. M. Colbert and J. Křivánek. GPU Gems 3, chapter GPU-Based Importance Sampling, pages 459--475. Addison-Wesley, 2007.Google ScholarGoogle Scholar
  15. Michael Cox and David Ellsworth. Application-controlled demand paging for out-of-core visualization. In Proceedings IEEE Visualization 1997, pages 235--244, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Franklin C. Crow. Shadow algorithms for computer graphics. In SIGGRAPH '77: Proceedings of the 4th annual conference on Computer graphics and interactive techniques, pages 242--248. ACM Press, 1977. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Franklin C. Crow. Summed-area tables for texture mapping. In Proceedings SIGGRAPH '84, volume 18, pages 207--212, 1984. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Carsten Dachsbacher and Marc Stamminger. Splatting indirect illumination. In I3D '06: Proceedings of the 2006 symposium on Interactive 3D graphics and games, pages 93--100, New York, NY, USA, 2006. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Ingrid Daubechies. Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Philippe Desgranges and Klaus Engel. US patent application 2007/0013696 A1: Fast ambient occlusion for direct volume rendering, 2007.Google ScholarGoogle Scholar
  21. Philippe Desgranges, Klaus Engel, and Gianluca Paladini. Gradient-free shading: A new method for realistic interactive volume rendering. In VMV '05: Proceedings of the international fall workshop on Vision, Modeling, and Visualization, pages 209--216, 2005.Google ScholarGoogle Scholar
  22. C. Donner and H. W. Jensen. Light Diffusion in Multi-Layered Translucent Materials. In Proc. ACM SIGGRAPH, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. R. A. Drebin, L. Carpenter, and P. Hanrahan. Volume rendering. In Proceedings of SIGGRAPH '88, pages 65--74, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. D. Ebert, F. K. Musgrave, D. Peachey, K. Perlin, and S. Worley. Texturing and Modeling: A Procedural Approach. Academic Press, July 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Klaus Engel, Markus Hadwiger, Joe Kniss, Christof Rezk-Salama, and Daniel Weiskopf. Real-Time Volume Graphics. AK Peters, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. James D. Foley, Richard L. Phillips, John F. Hughes, Andries van Dam, and Steven K. Feiner. Introduction to Computer Graphics. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Jinzhu Gao, Jian Huang, C. Ryan Johnson, and Scott Atchley. Distributed data management for large volume visualization. In Proceedings IEEE Visualization 2005, pages 183--189. IEEE, 2005.Google ScholarGoogle Scholar
  28. Jinzhu Gao, Jian Huang, Han-Wei Shen, and James Arthur Kohl. Visibility culling using plenoptic opacity functions for large volume visualization. In Proceedings IEEE Visualization 2003, pages 341--348. IEEE, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Jinzhu Gao, Han-Wei Shen, Jian Huang, and James Arthur Kohl. Visibility culling for time-varying volume rendering using temporal occlusion coherence. In Proceedings IEEE Visualization 2004, pages 147--154. IEEE, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. S. Grimm, S. Bruckner, A. Kanitsar, and E. Gröller. Memory efficient acceleration structures and techniques for cpu-based volume raycasting of large data. In Proceedings IEEE/SIGGRAPH Symposium on Volume Visualization and Graphics, pages 1--8, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Sören Grimm, Stefan Bruckner, Armin Kanitsar, and Eduard Gröller. Memory efficient acceleration structures and techniques for CPU-based volume raycasting of large data. In Proceedings IEEE Volume Visualization and Graphics Symposium, pages 1--8, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Sören Grimm, Stefan Bruckner, Armin Kanitsar, and Eduard Gröller. A refined data addressing and processing scheme to accelerate volume raycasting. Computers and Graphics, 28:719--729, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  33. Stefan Guthe and Wolfgang Straßer. Real-time decompression and visualization of animated volume data. In Proceedings IEEE Visualization 2001, pages 349--356, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Stefan Guthe and Wolfgang Strasser. Advanced techniques for high quality multiresolution volume rendering. In Computers&Graphics, volume 28, pages 51--58. Elsevier Science, February 2004.Google ScholarGoogle Scholar
  35. Stefan Guthe, Michael Wand, Julius Gonser, and Wolfgang Straßer. Interactive rendering of large volume data sets. In Proceedings IEEE Visualization 2002, pages 53--60, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Attila Gyulassy, Lars Linsen, and Bernd Hamann. Time- and space-efficient error calculation for multiresolution direct volume rendering. In Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration. Springer-Verlag, Heidelberg, Germany, 2006.Google ScholarGoogle Scholar
  37. M. Hadwiger, C. Sigg, H. Scharsach, K. Bühler, and M. Gross. Real-time ray-casting and advanced shading of discrete isosurfaces. In Proceedings of Eurographics 2005, pages 303--312, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  38. M. Hadwiger, C. Sigg, H. Scharsach, K. Bühler, and M. Gross. Real-Time Ray-Casting and Advanced Shading of Discrete Isosurfaces. In Proceedings of Eurographics, pages 303--312, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  39. Markus Hadwiger, Andrea Kratz, Christian Sigg, and Katja Bühler. Gpu-accelerated deep shadow maps for direct volume rendering. In GH '06: Proceedings of the 21st ACM SIGGRAPH/Eurographics symposium on Graphics hardware, pages 49--52, New York, NY, USA, 2006. ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. W. Heidrich and H.-P. Seidel. Realistic, Hardware-accellerated Shading and Lighting. In Proc. ACM SIGGRAPH, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. L. Henyey and J. Greenstein. Diffuse radiation in the galaxy. Astrophysical Journal, pages p. 70--83, 93.Google ScholarGoogle Scholar
  42. Frida Hernell, Patric Ljung, and Anders Ynnerman. Efficient ambient and emissive tissue illumination using local occlusion in multiresolution volume rendering. In Proceedings Eurographics/IEEE-VGTC Symposium on Volume Graphics. Eurographics/IEEE, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Frida Hernell, Patric Ljung, and Anders Ynnerman. Interactive Global Light Propagation in Direct Volume Rendering using Local Piecewise Integration. In IEEE/EG International Symposium on Volume and Point-Based Graphics, pages 105--112, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. W. Hong, F. Qiu, and A. Kaufman. Gpu-based object-order raycasting for large datasets. In Proceedings of Volume Graphics 2005, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Insung Ihm and Sanghun Park. Wavelet-based 3d compression scheme for interactive visualization of very large volume data. Computer Graphics Forum, 18(1):3--15, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  46. Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, and Pat Hanrahan. A Practical Model for Subsurface Light Transport. In Proceedings of ACM SIGGRAPH, pages 511--518, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Ralf Kähler, John Wise, Tom Abel, and Hans-Christian Hege. Gpu-assisted raycasting for cosmological adaptive mesg refinement simulations. In Proceedings Eurographics/IEEE Workshop on Volume Graphics 2006, pages 103--110, 144, 2006.Google ScholarGoogle Scholar
  48. D. Kalra and A. H. Barr. Guaranteed ray intersections with implicit surfaces. In Proceedings of SIGGRAPH '89, pages 297--306, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. A. Kaufman. Voxels as a Computational Representation of Geometry. In The Computational Representation of Geometry. SIGGRAPH '94 Course Notes, 1994.Google ScholarGoogle Scholar
  50. Tae-Yong Kim and Ulrich Neumann. Opacity shadow maps. In Proceedings of the 12th Eurographics Workshop on Rendering Techniques, pages 177--182, London, UK, 2001. Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Joe Kniss, Gordon Kindlmann, and Charles Hansen. Multidimensional transfer functions for interactive volume rendering. IEEE Transactions on Visualization and Computer Graphics, 8(3):270--285, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Joe Kniss, Simon Premoze, Charles Hansen, and David Ebert. Interactive translucent volume rendering and procedural modeling. In VIS '02: Proceedings of the conference on Visualization '02, pages 109--116. IEEE Computer Society, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Joe Kniss, Simon Premoze, Charles Hansen, Peter Shirley, and Allen McPherson. A model for volume lighting and modeling. IEEE Transactions on Visualization and Computer Graphics, 9(2):150--162, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. M. Kraus and T. Ertl. Adaptive texture maps. In Proceedings of Graphics Hardware 2002, pages 7--15, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. J. Krüger and R. Westermann. Acceleration techniques for GPU-based volume rendering. In Proceedings IEEE Visualization 2003, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Eric C. LaMar, Bernd Hamann, and Kenneth I. Joy. Multiresolution techniques for interactive texture-based volume visualization. In Proceedings IEEE Visualization 1999, pages 355--362, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Eric C. LaMar, Bernd Hamann, and Kenneth I. Joy. Efficient error calculation for multiresolution texture-based volume visualization. In Gerald Farin, Bernd Hamann, and Hans Hagen, editors, Hierachical and Geometrical Methods in Scientific Visualization, pages 51--62. Springer-Verlag, Heidelberg, Germany, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  58. Michael S. Langer and Heinrich H. Bülthoff. Depth discrimination from shading under diffuse lighting. Perception, 29(6):649--660, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  59. H. Lensch, M. Goesele, P. Bekaert, J. Kautz, M. Magnor, J. Lang, and H.-P. Seidel. Interactive rendering of translucent objects. Computer Graphics Forum, 22(2), 2003.Google ScholarGoogle Scholar
  60. M. Levoy. Display of surfaces from volume data. IEEE Computer Graphics and Applications, 8(3):29--37, May 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. F. Link, M. Koenig, and H.-O. Peitgen. Multi-Resolution Volume Rendering with per Object Shading. In Proceedings of Vision, Modeling and Visualization, pages 185--191, 2006.Google ScholarGoogle Scholar
  62. Yarden Livnat, Han-Wei Shen, and Christopher R. Johnson. A near optimal isosurface extraction algorithm using the span space. IEEE Transactions on Visualization and Computer Graphics, 2:73--84, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Patric Ljung. Adaptive sampling in single pass, GPU-based raycasting of multiresolution volumes. In Proceedings Eurographics/IEEE Workshop on Volume Graphics 2006, pages 39--46, 134, 2006.Google ScholarGoogle Scholar
  64. Patric Ljung. Efficient Methods for Direct Volume Rendering of Large Data Sets. PhD thesis, Linköping University, Sweden, 2006. Linköping studies in science and technology. Dissertations no. 1043.Google ScholarGoogle Scholar
  65. Patric Ljung, Claes Lundström, and Anders Ynnerman. Multiresolution interblock interpolation in direct volume rendering. In Proceedings Eurographics/IEEE Symposium on Visualization 2006, pages 259--266, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Patric Ljung, Claes Lundström, Anders Ynnerman, and Ken Museth. Transfer function based adaptive decompression for volume rendering of large medical data sets. In Proceedings IEEE Volume Visualization and Graphics Symposium 2004, pages 25--32, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Patric Ljung, Calle Winskog, Anders Perssson, Claes Lundström, and Anders Ynnerman. Full body virtual autopsies using a state-of-the-art volume rendering pipeline. IEEE Transactions on Visualization and Computer Graphics (Proceedings Visualization/Information Visualization 2006), 12:869--876, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Tom Lokovic and Eric Veach. Deep shadow maps. In SIGGRAPH '00: Proceedings of the 27th annual conference on Computer graphics and interactive techniques, pages 385--392, New York, NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Eric B. Lum, Kwan-Liu Ma, and John Clyne. Texture hardware assisted rendering of time-varying volume data. In Proceedings IEEE Visualization 2001, pages 263--270, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Eric B. Lum, Kwan-Liu Ma, and John Clyne. A hardware-assisted scalable solution for interactive volume rendering of time-varying data. IEEE Transactions on Visualization and Computer Graphics, 8:286--298, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Claes Lundström, Patric Ljung, and Anders Ynnerman. Local histograms for design of transfer functions in direct volume rendering. Transactions on Visualization and Computer Graphics, 12(6):1570--1579, Nov.-Dec. 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Gerd Marmitt, Heiko Friedrich, and Philipp Slusallek. Interactive Volume Rendering with Ray Tracing. In Eurographics State of the Art Reports, 2006.Google ScholarGoogle Scholar
  73. Nelson Max. Optical models for direct volume rendering. IEEE Transactions on Visualization and Computer Graphics, 1(2):99--108, June 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Nelson Max. Optical models for direct volume rendering. IEEE Transactions on Visualization and Computer Graphics, 1(2):99--108, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Jörg Mensmann, Timo Ropinski, and Klaus Hinrichs. Accelerating Volume Raycasting using Occlusion Frustum. In IEEE/EG International Symposium on Volume and Point-Based Graphics, pages 147--154, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Ky Giang Nguyen and Dietmar Saupe. Rapid high quality compression of volume data for visualization. Computer Graphics Forum, 20(3), 2001.Google ScholarGoogle Scholar
  77. Steven Parker, Michael Parker, Yarden Livnat, Peter-Pike Sloan, Charles Hansen, and Peter Shirley. Interactive ray tracing for volume visualization. IEEE Transactions on Visualization and Computer Graphics, 5(3):238--250, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Steven Parker, Peter Shirley, Yarden Livnat, Charles Hansen, and Peter-Pike Sloan. Interactive ray tracing for isosurface rendering. In Proceedings of IEEE Visualization '98. IEEE-CS, ACM, October 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. A. Patra and M. D. Wang. Volumetric medical image compression and reconstruction for interactive visualization in surgical planning. In Proceedings Data Compression Conference 2003, page 442, March 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Eric Penner and Ross Mitchell. Isosurface Ambient Occlusion and Soft Shadows with Filterable Occlusion Maps. In IEEE/EG International Symposium on Volume and Point-Based Graphics, pages 57--64, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Matt Pharr and Greg Humphries. Physically Based Rendering. Morgan Kauffman, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. William T. Reeves, David H. Salesin, and Robert L. Cook. Rendering antialiased shadows with depth maps. In SIGGRAPH '87: Proceedings of the 14th annual conference on Computer graphics and interactive techniques, pages 283--291. ACM Press, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. S. Roettger, S. Guthe, D. Weiskopf, and T. Ertl. Smart hardware-accelerated volume rendering. In Procceedings of EG/IEEE TCVG Symposium on Visualization VisSym '03, pages 231--238, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Timo Ropinski, Jens Kasten, and Klaus H. Hinrichs. Efficient Shadows for GPU-based Volume Raycasting. In Proceedings of the 16th International Conference in Central Europe on Computer Graphics, Visualization (WSCG08), pages 17--24, 2008.Google ScholarGoogle Scholar
  85. Timo Ropinski, Jennis Meyer-Spradow, Stefan Diepenbrock, Jörg Mensmann, and Klaus H. Hinrichs. Interactive Volume Rendering with Dynamic Ambient Occlusion and Color Bleeding. Computer Graphics Forum (Eurographics 2008), 27(2):567--576, 2008.Google ScholarGoogle Scholar
  86. Stefan Röttger, Michael Bauer, and Marc Stamminger. Spatialized transfer functions. In Euro Vis, pages 271--278, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. Marc Ruiz, Imma Boada, Ivan Viola, Stefan Bruckner, Miquel Feixas, and Mateu Sbert. Obscurance-based Volume Rendering Framework. In IEEE/EG International Symposium on Volume and Point-Based Graphics, pages 113--120, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. C. Rezk Salama. GPU-Based Monte-Carlo Volume Raycasting. In Proc. Pacific Graphics, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Mirko Sattler, Ralf Sarlette, Thomas Mücken, and Reinhard Klein. Exploitation of human shadow perception for fast shadow rendering. In APGV '05: Proceedings of the 2nd symposium on Applied perception in graphics and visualization, pages 131--134. ACM Press, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. H. Scharsach, M. Hadwiger, A. Neubauer, S. Wolfsberger, and K. Bühler. Perspective Isosurface and Direct Volume Rendering for Virtual Endoscopy Applications. In Proceedings of Eurovis '06, pages 315--323, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. Henning Scharsach. Advanced GPU raycasting. In Proceedings of the 9th Central European Seminar on Computer Graphics, May 2005.Google ScholarGoogle Scholar
  92. Jens Schneider and Rüdiger Westermann. Compression domain volume rendering. In Proceedings IEEE Visualization 2003, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Peter-Pike Sloan, Jesse Hall, John Hart, and John Snyder. Clustered principal components for precomputed radiance transfer. In SIGGRAPH '03: ACM SIGGRAPH 2003 Papers, pages 382--391. ACM Press, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. Peter-Pike Sloan, Ben Luna, and John Snyder. Local, deformable precomputed radiance transfer. In SIGGRAPH '05: ACM SIGGRAPH 2005 Papers, pages 1216--1224. ACM Press, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. Irwin Edward Sobel. Camera models and machine perception. PhD thesis, Stanford University, Stanford, CA, USA, 1970.Google ScholarGoogle Scholar
  96. Lisa M. Sobierajski and Arie E. Kaufman. Volumetric ray tracing. In VVS '94: Proceedings of the 1994 symposium on Volume Visualization '94, pages 11--18. ACM Press, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. S. Stegmaier, M. Strengert, T. Klein, and T. Ertl. A simple and flexible volume rendering framework for graphics-hardware--based raycasting. In Proceedings of the International Workshop on Volume Graphics '05, pages 187--195, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. A. James Stewart. Vicinity shading for enhanced perception of volumetric data. In VIS '03: Proceedings of the 14th IEEE Visualization 2003 (VIS'03), page 47. IEEE Computer Society, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. Wim Sweldens. The lifting scheme: A custom-design construction of biorthogonal wavelets. Journal of Applied and Computational Harmonic Analysis, (3):186--200, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  100. Martin Vetterli and Didier LeGall. Perfect reconstruction FIR filter banks: some properties and factorizations. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(7):1057--1071, July 1989.Google ScholarGoogle ScholarCross RefCross Ref
  101. Joachim E. Vollrath, Tobias Schafhitzel, and Thomas Ertl. Employing complex GPU data structures for the interactive visualization of adaptive mesh refinement data. In Proceedings Eurographics/IEEE Workshop on Volume Graphics 2006, pages 55--58, 136, 2006.Google ScholarGoogle Scholar
  102. Ingo Wald, Heiko Friedrich, Gerd Marmitt, and Hans-Peter Seidel. Faster isosurface ray tracing using implicit kd-trees. IEEE Transactions on Visualization and Computer Graphics, 11(5):562--572, 2005. Member-Philipp Slusallek. Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. Ingo Wald, Thomas Kollig, Carsten Benthin, Alexander Keller, and Philipp Slusallek. Interactive global illumination using fast ray tracing. In EGRW '02: Proceedings of the 13th Eurographics workshop on Rendering, pages 15--24, Aire-la-Ville, Switzerland, Switzerland, 2002. Eurographics Association. Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. M. Weiler, R. Westermann, C. Hansen, K. Zimmerman, and T. Ertl. Level-Of-Detail Volume Rendering via 3D Textures. In Proceedings of IEEE Symposium on Volume Visualization, pages 7--13, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. Manfred Weiler, Rüdiger Westermann, Chuck Hansen, Kurt Zimmerman, and Thomas Ertl. Level--of--detail volume rendering via 3d textures. In Proceedings IEEE Volume Visualization and Graphics Symposium 2000, pages 7--13. ACM Press, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. Rüdiger Westermann. A multiresolution framework for volume rendering. In 1994 Symposium on Volume Visualization, October 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. G. Wetekam, D. Staneker, U. Kanus, and M. Wand. A hardware architecture for multi-resolution volume rendering. In Proceedings ACM SIGGRAPH/Eurographics Conference on Graphics Hardware, pages 45--51, New York, NY, USA, 2005. ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. Jane Wilhelms and Allen Van Gelder. Octrees for faster isosurface generation. ACM Transactions on Graphics, 11:201--227, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. Lance Williams. Casting curved shadows on curved surfaces. In SIGGRAPH '78: Proceedings of the 5th annual conference on Computer graphics and interactive techniques, pages 270--274. ACM Press, 1978. Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. C. M. Wittenbrink, T. Malzbender, and M. E. Goss. Opacity-weighted color interpolation for volume sampling. In Proceedings of IEEE Symposium on Volume Visualization, pages 135--142, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. Chris Wyman, Steven Parker, Charles Hansen, and Peter Shirley. Interactive display of isosurfaces with global illumination. IEEE Transactions on Visualization and Computer Graphics, 12(2):186--196, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. Boon-Lock Yeo and Bede Liu. Volume rendering of DCT-based compressed 3d scalar data. IEEE Transactions on Visualization and Computer Graphics, 1:29--43, March 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. C. Zhang, D. Xue, and R. Crawfis. Light propagation for mixed polygonal and volumetric data. In CGI '05: Proceedings of the Computer Graphics International 2005, pages 249--256, Washington, DC, USA, 2005. IEEE Computer Society. Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. Caixia Zhang and Roger Crawfis. Shadows and soft shadows with participating media using splatting. IEEE Transactions on Visualization and Computer Graphics, 9(2):139--149, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Advanced illumination techniques for GPU-based volume raycasting

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            SIGGRAPH '09: ACM SIGGRAPH 2009 Courses
            August 2009
            4249 pages
            ISBN:9781450379380
            DOI:10.1145/1667239

            Copyright © 2009 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 3 August 2009

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            Overall Acceptance Rate1,822of8,601submissions,21%

            Upcoming Conference

            SIGGRAPH '24

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader